Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 550(7675): 219-223, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29022593

RESUMO

Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

2.
Nature ; 491(7425): 566-9, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23172214

RESUMO

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

3.
Nature ; 439(7072): 52-4, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16397493

RESUMO

Pluto and its satellite, Charon (discovered in 1978; ref. 1), appear to form a double planet, rather than a hierarchical planet/satellite couple. Charon is about half Pluto's size and about one-eighth its mass. The precise radii of Pluto and Charon have remained uncertain, leading to large uncertainties on their densities. Although stellar occultations by Charon are in principle a powerful way of measuring its size, they are rare, as the satellite subtends less than 0.3 microradians (0.06 arcsec) on the sky. One occultation (in 1980) yielded a lower limit of 600 km for the satellite's radius, which was later refined to 601.5 km (ref. 4). Here we report observations from a multi-station stellar occultation by Charon, which we use to derive a radius, R(C) = 603.6 +/- 1.4 km (1sigma), and a density of rho = 1.71 +/- 0.08 g cm(-3). This occultation also provides upper limits of 110 and 15 (3sigma) nanobar for an atmosphere around Charon, assuming respectively a pure nitrogen or pure methane atmosphere.

4.
Nat Commun ; 13(1): 447, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105878

RESUMO

Trojan asteroids are small bodies orbiting around the L4 or L5 Lagrangian points of a Sun-planet system. Due to their peculiar orbits, they provide key constraints to the Solar System evolution models. Despite numerous dedicated observational efforts in the last decade, asteroid 2010 TK7 has been the only known Earth Trojan thus far. Here we confirm that the recently discovered 2020 XL5 is the second transient Earth Trojan known. To study its orbit, we used archival data from 2012 to 2019 and observed the object in 2021 from three ground-based observatories. Our study of its orbital stability shows that 2020 XL5 will remain in L4 for at least 4 000 years. With a photometric analysis we estimate its absolute magnitude to be [Formula: see text], and color indices suggestive of a C-complex taxonomy. Assuming an albedo of 0.06 ± 0.03, we obtain a diameter of 1.18 ± 0.08 km, larger than the first known Earth Trojan asteroid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA