Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 126(Pt 20): 4553-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23943869

RESUMO

Activating mutations in the K-Ras small GTPase are extensively found in human tumors. Although these mutations induce the generation of a constitutively GTP-loaded, active form of K-Ras, phosphorylation at Ser181 within the C-terminal hypervariable region can modulate oncogenic K-Ras function without affecting the in vitro affinity for its effector Raf-1. In striking contrast, K-Ras phosphorylated at Ser181 shows increased interaction in cells with the active form of Raf-1 and with p110α, the catalytic subunit of PI 3-kinase. Because the majority of phosphorylated K-Ras is located at the plasma membrane, different localization within this membrane according to the phosphorylation status was explored. Density-gradient fractionation of the plasma membrane in the absence of detergents showed segregation of K-Ras mutants that carry a phosphomimetic or unphosphorylatable serine residue (S181D or S181A, respectively). Moreover, statistical analysis of immunoelectron microscopy showed that both phosphorylation mutants form distinct nanoclusters that do not overlap. Finally, induction of oncogenic K-Ras phosphorylation - by activation of protein kinase C (PKC) - increased its co-clustering with the phosphomimetic K-Ras mutant, whereas (when PKC is inhibited) non-phosphorylated oncogenic K-Ras clusters with the non-phosphorylatable K-Ras mutant. Most interestingly, PI 3-kinase (p110α) was found in phosphorylated K-Ras nanoclusters but not in non-phosphorylated K-Ras nanoclusters. In conclusion, our data provide - for the first time - evidence that PKC-dependent phosphorylation of oncogenic K-Ras induced its segregation in spatially distinct nanoclusters at the plasma membrane that, in turn, favor activation of Raf-1 and PI 3-kinase.


Assuntos
Genes ras , Proteínas ras/genética , Proteínas ras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais
2.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281643

RESUMO

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Assuntos
Neoplasias Colorretais , Interferon-alfa , Animais , Camundongos , Células Endoteliais/patologia , Linfócitos T CD8-Positivos , Fígado , Hepatócitos , Neoplasias Colorretais/patologia
3.
Cancer Res ; 74(4): 1190-9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24371225

RESUMO

KRAS phosphorylation has been reported recently to modulate the activity of mutant KRAS protein in vitro. In this study, we defined S181 as a specific phosphorylation site required to license the oncogenic function of mutant KRAS in vivo. The phosphomutant S181A failed to induce tumors in mice, whereas the phosphomimetic mutant S181D exhibited an enhanced tumor formation capacity, compared with the wild-type KRAS protein. Reduced growth of tumors composed of cells expressing the nonphosphorylatable KRAS S181A mutant was correlated with increased apoptosis. Conversely, increased growth of tumors composed of cells expressing the phosphomimetic KRAS S181D mutant was correlated with increased activation of AKT and ERK, two major downstream effectors of KRAS. Pharmacologic treatment with PKC inhibitors impaired tumor growth associated with reduced levels of phosphorylated KRAS and reduced effector activation. In a panel of human tumor cell lines expressing various KRAS isoforms, we showed that KRAS phosphorylation was essential for survival and tumorigenic activity. Furthermore, we identified phosphorylated KRAS in a panel of primary human pancreatic tumors. Taken together, our findings establish that KRAS requires S181 phosphorylation to manifest its oncogenic properties, implying that its inhibition represents a relevant target to attack KRAS-driven tumors.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina/metabolismo , Proteínas ras/metabolismo , Animais , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
4.
Small GTPases ; 2(2): 99-103, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21776410

RESUMO

The small G-protein Ras was the first oncogene to be identified and has a very important contribution to human cancer development (20-23% prevalence). K-RasB, one of the members of the Ras family, is the one that is most mutated and plays a prominent role in pancreatic, colon and lung cancer development. Ras proteins are membrane bound GTPases that cycle between inactive, GDP-bound and active, GTP-bound, states. Most of the research into K-RasB activity regulation has focused on the analysis of how GTP-exchange factors (GEFs) and GTPase activating proteins (GAPs) are regulated by external and internal signals. In contrast, oncogenic K-RasB has a very low GTPase activity and furthermore is not deactivated by GAPs. Consequently, the consensus was that activity of oncogenic K-RasB was not modulated. In this extra view we recapitulate some recent data showing that calmodulin binding to K-RasB inhibits phosphorylation of K-RasB at Ser181, near to the membrane anchoring domain, modulating signaling of both non-oncogenic and oncogenic K-RasB. This may be relevant to normal cell physiology, but also opens new therapeutic perspectives for the inhibition of oncogenic K-RasB signaling in tumors.

5.
J Cell Biol ; 184(6): 863-79, 2009 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-19289794

RESUMO

Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein-Raf1 and the Raichu-KRas probe, we identified for the first time in vivo-active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14-MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.


Assuntos
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Endossomos/metabolismo , Lisossomos/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Androstenos/farmacologia , Animais , Células COS , Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Proteína Adaptadora GRB2/metabolismo , Células HeLa , Humanos , Macrolídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Células Vero , Proteínas ras/genética
6.
J Biol Chem ; 283(16): 10621-31, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18182391

RESUMO

We previously showed that K-Ras is a calmodulin-binding protein. Involvement of this interaction in anterograde and retrograde transport of K-Ras was then suggested. To test this we have analyzed here the domains of K-Ras essential for the interaction with calmodulin. At least three different regions in the K-Ras molecule were important; they are the hypervariable region, the alpha-helix between amino acids 151 and 166, and the Switch II. Within the hypervariable region, both the hydrophobic farnesyl group and the positive-charged amino acids were essential for the interaction between K-Ras and calmodulin in cellular extracts. Consistently, K-Ras S181D, which mimics phosphorylation of Ser-181 of K-Ras, also completely abolished binding to calmodulin. K-Ras mutants correctly farnesylated that did not bind calmodulin were all located at plasma membrane, showing that calmodulin interaction was not required for the transport of K-Ras to plasma membrane. In NIH3T3 cells, K-Ras and calmodulin colocalized mainly in the plasma membrane even after the addition of Ca(2+) ionophore, indicating that interaction did not directly lead to K-Ras internalization. Furthermore, using a K-Ras with impaired binding to calmodulin but with membrane localization, we could demonstrate in striatal neurones that interaction between K-Ras and calmodulin was not required for Golgi K-Ras translocation induced by Ca(2+) influx.


Assuntos
Calmodulina/química , Proteínas ras/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Genes ras , Ionóforos/química , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Células NIH 3T3 , Plasmídeos/metabolismo , Ligação Proteica , Transporte Proteico , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA