Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2122734119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994668

RESUMO

Biological invasions are a major cause of environmental and economic disruption. While ecological factors are key determinants of their success, the role of genetics has been more challenging to demonstrate. The colonization of Australia by the European rabbit is one of the most iconic and devastating biological invasions in recorded history. Here, we show that despite numerous introductions over a 70-y period, this invasion was triggered by a single release of a few animals that spread thousands of kilometers across the continent. We found genetic support for historical accounts that these were English rabbits imported in 1859 by a settler named Thomas Austin and traced the origin of the invasive population back to his birthplace in England. We also find evidence of additional introductions that established local populations but have not spread geographically. Combining genomic and historical data we show that, contrary to the earlier introductions, which consisted mostly of domestic animals, the invasive rabbits had wild ancestry. In New Zealand and Tasmania, rabbits also became a pest several decades after being introduced. We argue that the common denominator of these invasions was the arrival of a new genotype that was better adapted to the natural environment. These findings demonstrate how the genetic composition of invasive individuals can determine the success of an introduction and provide a mechanism by which multiple introductions can be required for a biological invasion.


Assuntos
Animais Selvagens , Genética Populacional , Espécies Introduzidas , Coelhos , Animais , Animais Domésticos , Animais Selvagens/genética , Animais Selvagens/fisiologia , Austrália , Variação Genética , Genômica , Genótipo , História do Século XIX , História do Século XX , História do Século XXI , Espécies Introduzidas/estatística & dados numéricos , Nova Zelândia , Coelhos/genética , Coelhos/fisiologia , Tasmânia , Fatores de Tempo
2.
PLoS Pathog ; 14(4): e1006951, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649296

RESUMO

Host shifts, where a pathogen invades and establishes in a new host species, are a major source of emerging infectious diseases. They frequently occur between related host species and often rely on the pathogen evolving adaptations that increase their fitness in the novel host species. To investigate genetic changes in novel hosts, we experimentally evolved replicate lineages of an RNA virus (Drosophila C Virus) in 19 different species of Drosophilidae and deep sequenced the viral genomes. We found a strong pattern of parallel evolution, where viral lineages from the same host were genetically more similar to each other than to lineages from other host species. When we compared viruses that had evolved in different host species, we found that parallel genetic changes were more likely to occur if the two host species were closely related. This suggests that when a virus adapts to one host it might also become better adapted to closely related host species. This may explain in part why host shifts tend to occur between related species, and may mean that when a new pathogen appears in a given species, closely related species may become vulnerable to the new disease.


Assuntos
Evolução Biológica , Drosophilidae/genética , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Filogenia , Vírus de RNA/genética , Fenômenos Fisiológicos Virais , Animais , Drosophilidae/classificação , Drosophilidae/virologia , Genoma Viral , Replicação Viral
3.
BMC Biol ; 15(1): 16, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28241828

RESUMO

BACKGROUND: The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. RESULTS: To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. CONCLUSIONS: We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.


Assuntos
Aedes/genética , Vetores de Doenças , Genômica , Adaptação Fisiológica/genética , África Ocidental , América , Migração Animal , Animais , Ásia , Sequência de Bases , Exoma/genética , Variação Genética , Genética Populacional , Genoma de Inseto , Humanos , Filogenia , Densidade Demográfica , Análise de Componente Principal
4.
Anim Genet ; 46(4): 418-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25999142

RESUMO

Reproductive seasonality is a trait that often differs between domestic animals and their wild ancestors, with domestic animals showing prolonged or even continuous breeding seasons. However, the genetic basis underlying this trait is still poorly understood for most species, and because environmental factors and resource availability are known to play an important role in determining breeding seasons, it is also not clear in most cases to what extent this phenotypic shift is determined by the more lenient captive conditions or by genetic factors. Here, using animals resulting from an initial cross between wild and domestic rabbits followed by two consecutive backcrosses (BC1 and BC2) to wild rabbits, we evaluated the yearly distribution of births for the different generations. Similar to domestic rabbits, F1 animals could be bred all year round but BC1 and BC2 animals showed a progressive and significant reduction in the span of the breeding season, providing experimental evidence that reduced seasonal breeding in domestic rabbits has a clear genetic component and is not a simple by-product of rearing conditions. We then took advantage of a recently published genome-wide scan of selection in the domesticated lineage and searched for candidate genes potentially associated with this phenotypic shift. Candidate genes located within regions targeted by selection include well-known examples of genes controlling clock functions (CRY1 and NR3C1) and reproduction (PRLR).


Assuntos
Coelhos/genética , Reprodução/genética , Estações do Ano , Animais , Animais Domésticos/genética , Animais Selvagens/genética , Cruzamentos Genéticos , Feminino , Masculino , Fenótipo
5.
Nat Ecol Evol ; 8(8): 1543-1555, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907020

RESUMO

Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.


Assuntos
Alelos , Domesticação , Espécies Introduzidas , Seleção Genética , Animais , Coelhos/genética
6.
Sci Adv ; 10(17): eadl5255, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657058

RESUMO

Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.


Assuntos
Polimorfismo Genético , Animais , Feminino , Masculino , Aves/genética , Fenótipo , Evolução Biológica , Pigmentação/genética , Caracteres Sexuais , Evolução Molecular
7.
Science ; 363(6433): 1319-1326, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30765607

RESUMO

In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.


Assuntos
Adaptação Biológica/genética , Imunidade Inata/genética , Myxoma virus/imunologia , Mixomatose Infecciosa/imunologia , Coelhos/genética , Coelhos/virologia , Alelos , Animais , Austrália , Evolução Molecular , França , Frequência do Gene , Variação Genética , Interferon alfa-2/genética , Interferon alfa-2/imunologia , Mixomatose Infecciosa/genética , Polimorfismo de Nucleotídeo Único , População , Coelhos/imunologia , Reino Unido
8.
Science ; 360(6395): 1355-1358, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930138

RESUMO

Snowshoe hares (Lepus americanus) maintain seasonal camouflage by molting to a white winter coat, but some hares remain brown during the winter in regions with low snow cover. We show that cis-regulatory variation controlling seasonal expression of the Agouti gene underlies this adaptive winter camouflage polymorphism. Genetic variation at Agouti clustered by winter coat color across multiple hare and jackrabbit species, revealing a history of recurrent interspecific gene flow. Brown winter coats in snowshoe hares likely originated from an introgressed black-tailed jackrabbit allele that has swept to high frequency in mild winter environments. These discoveries show that introgression of genetic variants that underlie key ecological traits can seed past and ongoing adaptation to rapidly changing environments.


Assuntos
Mimetismo Biológico/fisiologia , Lebres/fisiologia , Pigmentação da Pele/fisiologia , Proteína Agouti Sinalizadora/genética , Animais , Mimetismo Biológico/genética , Regulação da Expressão Gênica , Variação Genética , Lebres/genética , Muda/genética , Muda/fisiologia , Estações do Ano , Pigmentação da Pele/genética
9.
PLoS One ; 10(12): e0144687, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689909

RESUMO

Over thousands of years humans changed the genetic and phenotypic composition of several organisms and in the process transformed wild species into domesticated forms. From this close association, domestic animals emerged as important models in biomedical and fundamental research, in addition to their intrinsic economical and cultural value. The domestic rabbit is no exception but few studies have investigated the impact of domestication on its genetic variability. In order to study patterns of genetic structure in domestic rabbits and to quantify the genetic diversity lost with the domestication process, we genotyped 45 microsatellites for 471 individuals belonging to 16 breeds and 13 wild localities. We found that both the initial domestication and the subsequent process of breed formation, when averaged across breeds, culminated in losses of ~20% of genetic diversity present in the ancestral wild population and domestic rabbits as a whole, respectively. Despite the short time elapsed since breed diversification we uncovered a well-defined structure in domestic rabbits where the FST between breeds was 22%. However, we failed to detect deeper levels of structure, probably consequence of a recent and single geographic origin of domestication together with a non-bifurcating process of breed formation, which were often derived from crosses between two or more breeds. Finally, we found evidence for intrabreed stratification that is associated with demographic and selective causes such as formation of strains, colour morphs within the same breed, or country/breeder of origin. These additional layers of population structure within breeds should be taken into account in future mapping studies.


Assuntos
Cruzamento , Variação Genética , Repetições de Microssatélites , Animais , Feminino , Masculino , Coelhos
11.
Science ; 345(6200): 1074-1079, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25170157

RESUMO

The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.


Assuntos
Animais Domésticos/genética , Animais Selvagens/genética , Coelhos/genética , Animais , Animais Domésticos/anatomia & histologia , Animais Domésticos/psicologia , Animais Selvagens/anatomia & histologia , Animais Selvagens/psicologia , Sequência de Bases , Comportamento Animal , Cruzamento , Evolução Molecular , Frequência do Gene , Loci Gênicos , Genoma/genética , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Coelhos/anatomia & histologia , Coelhos/psicologia , Seleção Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA