Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Bioanal Chem ; 414(3): 1245-1258, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668045

RESUMO

Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.


Assuntos
Poluentes Orgânicos Persistentes/química , Poluentes Orgânicos Persistentes/metabolismo , Monitoramento Ambiental/métodos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Praguicidas/análise , Praguicidas/metabolismo , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo
2.
J Environ Sci (China) ; 115: 350-362, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969462

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of concern because of their ubiquitous presence in surface and ground water; analytical methods that can be used for rapid comprehensive exposure assessment and fingerprinting of PFAS are needed. Following the fires at the Intercontinental Terminals Company (ITC) in Deer Park, TX in 2019, large quantities of PFAS-containing firefighting foams were deployed. The release of these substances into the Houston Ship Channel/Galveston Bay (HSC/GB) prompted concerns over the extent and level of PFAS contamination. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based study of temporal and spatial patterns of PFAS associated with this incident revealed presence of 7 species; their levels gradually decreased over a 6-month period. Because the targeted LC-MS/MS analysis was focused on about 30 PFAS molecules, it may have missed other PFAS compounds present in firefighting foams. Therefore, we utilized untargeted LC-ion mobility spectrometry-mass spectrometry (LC-IMS-MS)-based analytical approach for a more comprehensive characterization of PFAS in these water samples. We analyzed 31 samples from 9 sites in the HSC/GB that were collected over 5 months after the incident. Our data showed that additional 19 PFAS were detected in surface water of HSC/GB, most of them decreased gradually after the incident. PFAS features detected by LC-MS/MS correlated well in abundance with LC-IMS-MS data; however, LC-IMS-MS identified a number of additional PFAS, many known to be components of firefighting foams. These findings therefore illustrate that untargeted LC-IMS-MS improved our understanding of PFAS presence in complex environmental samples.


Assuntos
Cervos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Baías , Cromatografia Líquida , Fluorocarbonos/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 54(23): 15024-15034, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176098

RESUMO

Aqueous film-forming foams (AFFF) are mixtures formulated with numerous hydrocarbon- and fluoro-containing surfactants. AFFF use leads to environmental releases of unknown per- and polyfluoroalkyl substances (PFAS). AFFF composition is seldom disclosed, and their use elicits concerns from both regulatory agencies and the public because PFAS are persistent in the environment and potentially associated with adverse health effects. In this study, we demonstrate the use of coupled liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to rapidly characterize both known and unknown PFAS in AFFF. Ten AFFF formulations from seven brands were analyzed using LC-IMS-MS in both negative and positive ion modes. Untargeted analysis of the formulations was followed by feature identification of PFAS-like features utilizing database matching, mass defect and homologous series evaluation, and MS/MS fragmentation experiments. Across the tested AFFF formulations, we identified 33 homologous series; only ten of these homologous series have been previously reported. Among tested AFFF, the FireStopper (n = 85) contained the greatest number of PFAS-like features and Phos-Check contained zero. This work demonstrates that LC-IMS-MS-enabled untargeted analysis of complex formulations, followed by feature identification using data-processing algorithms, can be used for rapid exposure characterization of known and putative PFAS during fire suppression-related contamination events.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise
4.
Anal Bioanal Chem ; 411(19): 4673-4682, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31098744

RESUMO

Bile acids (BAs) play an integral role in digestion through the absorption of nutrients, emulsification of fats and fat-soluble vitamins, and maintenance of cholesterol levels. Metabolic disruption, diabetes, colorectal cancer, and numerous other diseases have been linked with BA disruption, making improved BA analyses essential. To date, most BA measurements are performed using liquid chromatography separations in conjunction with mass spectrometry measurements (LC-MS). However, 10-40 min LC gradients are often used for BA analyses and these may not even be sufficient for distinguishing all the important isomers present in the human body. Ion mobility spectrometry (IMS) is a promising tool for BA evaluations due to its ability to quickly separate isomeric molecules with subtle structural differences. In this study, we utilized drift tube IMS (DTIMS) coupled with MS to characterize 56 different unlabeled BA standards and 16 deuterated versions. In the DTIMS-MS analyses of 12 isomer groups, BAs with smaller m/z values were easily separated in either their deprotonated or sodiated forms (or both). However, as the BAs grew in m/z value, they became more difficult to separate with two isomer groups being inseparable. Metal ions such as copper and zinc were then added to the overlapping BAs, and due to different binding sites, the resulting complexes were separable. Thus, the rapid structural measurements possible with DTIMS-MS show great potential for BAs measurements with and without prior LC separations.


Assuntos
Ácidos e Sais Biliares/química , Espectrometria de Mobilidade Iônica/métodos , Ácidos e Sais Biliares/normas , Cobre/química , Humanos , Isomerismo , Estrutura Molecular , Padrões de Referência , Zinco/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-35162780

RESUMO

Natural and anthropogenic disasters are associated with air quality concerns due to the potential redistribution of pollutants in the environment. Our objective was to conduct a spatiotemporal analysis of air concentrations of benzene, toluene, ethylbenzne, and xylene (BTEX) and criteria air pollutants in North Carolina during and after Hurricane Florence. Three sampling campaigns were carried out immediately after the storm (September 2018) and at four-month intervals. BTEX were measured along major roads. Concurrent criteria air pollutant concentrations were predicted from modeling. Correlation between air pollutants and possible point sources was conducted using spatial regression. Exceedances of ambient air criteria were observed for benzene (in all sampling periods) and PM2.5 (mostly immediately after Florence). For both, there was an association between higher concentrations and fueling stations, particularly immediately after Florence. For other pollutants, concentrations were generally below levels of regulatory concern. Through characterization of air quality under both disaster and "normal" conditions, this study demonstrates spatial and temporal variation in air pollutants. We found that only benzene and PM2.5 were present at levels of potential concern, and there were localized increases immediately after the hurricane. These substances warrant particular attention in future disaster response research (DR2) investigations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tempestades Ciclônicas , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , North Carolina , Emissões de Veículos/análise
6.
J Expo Sci Environ Epidemiol ; 31(5): 810-822, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33895777

RESUMO

BACKGROUND: Hurricane Florence made landfall in North Carolina in September 2018 causing extensive flooding. Several potential point sources of hazardous substances and Superfund sites sustained water damage and contaminants may have been released into the environment. OBJECTIVE: This study conducted temporal analysis of contaminant distribution and potential human health risks from Hurricane Florence-associated flooding. METHODS: Soil samples were collected from 12 sites across four counties in North Carolina in September 2018, January and May 2019. Chemical analyses were performed for organics by gas chromatography-mass spectrometry. Metals were analyzed using inductively coupled plasma mass spectrometry. Hazard index and cancer risk were calculated using EPA Regional Screening Level Soil Screening Levels for residential soils. RESULTS: PAH and metals detected downstream from the coal ash storage pond that leaked were detected and were indicative of a pyrogenic source of contamination. PAH at these sites were of human health concern because cancer risk values exceeded 1 × 10-6 threshold. Other contaminants measured across sampling sites, or corresponding hazard index and cancer risk, did not exhibit spatial or temporal differences or were of concern. SIGNIFICANCE: This work shows the importance of rapid exposure assessment following natural disasters. It also establishes baseline levels of contaminants for future comparisons.


Assuntos
Tempestades Ciclônicas , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Metais , North Carolina/epidemiologia , Solo
7.
Energy Fuels ; 35(13): 10529-10539, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366560

RESUMO

Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) is a post-ionization separation technique that can be used for rapid multidimensional analyses of complex samples. IMS-MS offers untargeted analysis, including ion-specific conformational data derived as collisional cross section (CCS) values. Here, we combine nitrogen gas drift tube CCS (DTCCSN2) and Kendrick mass defect (KMD) analyses based on CH2 and H functional units to enable compositional analyses of petroleum substances. First, polycyclic aromatic compound standards were analyzed by IMS-MS to demonstrate how CCS assists the identification of isomeric species in homologous series. Next, we used case studies of a gasoline standard previously characterized for paraffin, isoparaffin, aromatic, naphthene, and olefinic (PIANO) compounds, and a crude oil sample to demonstrate the application of the KMD analyses and CCS filtering. Finally, we propose a workflow that enables confident molecular formula assignment to the IMS-MS-derived features in petroleum samples. Collectively, this work demonstrates how rapid untargeted IMS-MS analysis and the proposed data processing workflow can be used to provide confident compositional characterization of hydrocarbon-containing substances.

8.
Environ Pollut ; 265(Pt B): 115009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32574947

RESUMO

Firefighting foams contain per- and polyfluoroalkyl substances (PFAS) - a class of compounds widely used as surfactants. PFAS are persistent organic pollutants that have been reported in waterways and drinking water systems across the United States. These substances are of interest to both regulatory agencies and the general public because of their persistence in the environment and association with adverse health effects. PFAS can be released in large quantities during industrial incidents because they are present in most firefighting foams used to suppress chemical fires; however, little is known about persistence of PFAS in public waterways after such events. In response to large-scale fires at Intercontinental Terminal Company (ITC) in Houston, Texas in March 2019, almost 5 million liters of class B firefighting foams were used. Much of this material flowed into the Houston Ship Channel and Galveston Bay (HSC/GB) and concerns were raised about the levels of PFAS in these water bodies that have commercial and recreational uses. To evaluate the impact of the ITC incident response on PFAS levels in HSC/GB, we collected 52 surface water samples from 12 locations over a 6-month period after the incident. Samples were analyzed using liquid chromatography-mass spectrometry to evaluate 27 PFAS, including perfluorocarboxylic acids, perfluorosulfonates and fluorotelomers. Among PFAS that were evaluated, 6:2 FTS and PFOS were detected at highest concentrations. Temporal and spatial profiles of PFAS were established; we found a major peak in the level of many PFAS in the days and weeks after the incident and a gradual decline over several months with patterns consistent with the tide- and wave-associated water movements. This work documents the impact of a large-scale industrial fire, on the environmental levels of PFAS, establishes a baseline concentration of PFAS in HSC/GB, and highlights the critical need for development of PFAS water quality standards.


Assuntos
Água Potável/análise , Incêndios , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Texas
9.
Anal Chim Acta ; 1037: 265-273, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30292301

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. In this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.


Assuntos
Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/metabolismo , Bifenil Polibromatos/análise , Bifenil Polibromatos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Cromatografia Líquida , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Estrutura Molecular
10.
Chem Sci ; 8(11): 7724-7736, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568436

RESUMO

The confident identification of metabolites and xenobiotics in biological and environmental studies is an analytical challenge due to their immense dynamic range, vast chemical space and structural diversity. Ion mobility spectrometry (IMS) is widely used for small molecule analyses since it can separate isomeric species and be easily coupled with front end separations and mass spectrometry for multidimensional characterizations. However, to date IMS metabolomic and exposomic studies have been limited by an inadequate number of accurate collision cross section (CCS) values for small molecules, causing features to be detected but not confidently identified. In this work, we utilized drift tube IMS (DTIMS) to directly measure CCS values for over 500 small molecules including primary metabolites, secondary metabolites and xenobiotics. Since DTIMS measurements do not need calibrant ions or calibration like some other IMS techniques, they avoid calibration errors which can cause problems in distinguishing structurally similar molecules. All measurements were performed in triplicate in both positive and negative polarities with nitrogen gas and seven different electric fields, so that relative standard deviations (RSD) could be assessed for each molecule and structural differences studied. The primary metabolites analyzed to date have come from key metabolism pathways such as glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle, while the secondary metabolites consisted of classes such as terpenes and flavonoids, and the xenobiotics represented a range of molecules from antibiotics to polycyclic aromatic hydrocarbons. Different CCS trends were observed for several of the diverse small molecule classes and when urine features were matched to the database, the addition of the IMS dimension greatly reduced the possible number of candidate molecules. This CCS database and structural information are freely available for download at http://panomics.pnnl.gov/metabolites/ with new molecules being added frequently.

11.
ChemistrySelect ; 1(10): 2396-2399, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936476

RESUMO

Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems. Multi-omic analyses and the desire for comprehensive measurement coverage presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved resolution for biomolecular species, in conjunction with more effective ion utilization, and a basis for greatly improved characterization of very small sample sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA