Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plants (Basel) ; 12(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299114

RESUMO

Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. N deprivation caused reductions of up to 65% in terms of plant architecture, 37% in terms of leaf pigments, and 42% in terms of photosynthesis-related traits. Heterosis had significant effects on growth traits, NUE, and foliar pigments, particularly under low soil nitrogen conditions. N-utilization efficiency was found to be the mechanism favoring superior hybrid performance for NUE. Non-additive genetic effects were predominant in controlling the studied traits, indicating that exploring heterosis is the most effective strategy for obtaining superior hybrids to promote NUE. The findings are relevant and beneficial for agro farmers seeking sustainable agricultural practices and improved crop productivity through the optimization of nitrogen utilization.

2.
Plants (Basel) ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903916

RESUMO

In view of the need to develop new popcorn cultivars and considering the uncertainties in choosing the most appropriate breeding methods to ensure consistent genetic progress, simultaneously for both popping expansion and grain yield, this study addressed the efficiency of interpopulation recurrent selection regarding genetic gains, the study of the response in genetic parameters as well as heterotic effects on the control of the main agronomic traits of popcorn. Two populations were established, Pop1 and Pop2. A total of 324 treatments were evaluated, which consisted of 200 half-sib families (100 from Pop1 and 100 from Pop2), 100 full-sib families from the two populations and 24 controls. The field experiment was arranged in a lattice design with three replications in two environments, in the north and northwest regions of the State of Rio de Janeiro, Brazil. The genotype × environment interaction was partitioned and the genetic parameters, heterosis and predicted gains were estimated by the Mulamba and Mock index, based on selection results in both environments. The genetic parameters detected variability that can be explored in successive interpopulation recurrent selection cycles. Exploring heterosis for GY, PE and yield components is a promising option to increase grain yield and quality. The Mulamba and Mock index was efficient in predicting the genetic gains in GY and PE. Interpopulation recurrent selection proved effective to provide genetic gains for traits with predominantly additive and dominance inheritance.

3.
Plants (Basel) ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161325

RESUMO

Salinity stress is a barrier to crop production, quality yield, and sustainable agriculture. The current study investigated the plant growth promotion, biochemical and molecular characterization of bacterial strain Enterobacter cloacae PM23 under salinity stress (i.e., 0, 300, 600, and 900 mM). E. cloacae PM23 showed tolerance of up to 3 M NaCl when subjected to salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing genes (sfp and srfAA) were amplified in E. cloacae PM23, indicating its multi-stress resistance potential under biotic and abiotic stresses. Moreover, the upregulation of stress-related genes (APX and SOD) helped to mitigate salinity stress and improved plant growth. Inoculation of E. cloacae PM23 enhanced plant growth, biomass, and photosynthetic pigments under salinity stress. Bacterial strain E. cloacae PM23 showed distinctive salinity tolerance and plant growth-promoting traits such as indole-3-acetic acid (IAA), siderophore, ACC deaminase, and exopolysaccharides production under salinity stress. To alleviate salinity stress, E. cloacae PM23 inoculation enhanced radical scavenging capacity, relative water content, soluble sugars, proteins, total phenolic, and flavonoid content in maize compared to uninoculated (control) plants. Moreover, elevated levels of antioxidant enzymes and osmoprotectants (Free amino acids, glycine betaine, and proline) were noticed in E. cloacae PM23 inoculated plants compared to control plants. The inoculation of E. cloacae PM23 significantly reduced oxidative stress markers under salinity stress. These findings suggest that multi-stress tolerant E. cloacae PM23 could enhance plant growth by mitigating salt stress and provide a baseline and ecofriendly approach to address salinity stress for sustainable agriculture.

4.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079656

RESUMO

The search for productive germplasm adapted to adverse conditions is an important action to mitigate the harmful effects of climate change. The aim was to identify the yield potential of 50 popcorn inbred lines grown in field conditions, in two crop seasons (CS), and under contrasting water conditions (WC). Morphoagronomic, physiological, and root system traits were evaluated. Joint and individual analyses of variance were performed, in addition to the multivariate GT bip-lot analysis. Expressive reductions between WC were observed in 100-grain weight (100 GW), popping expansion (PE), grain yield (GY), expanded popcorn volume per ha (EPV), row number per ear (RNE), plant height (PH), relative chlorophyll content (SPAD), and nitrogen balance index (NBI). It was found that the SPAD, 100 GW, GY, PE, and grain number per ear (GNE) traits had the most significant impact on the selection of genotypes. Regardless of WC and CS, the ideal lines were L294 and L688 for PE; L691 and L480 for GY; and L291 and L292 for both traits. SPAD, 100 GW, and GNE can contribute to the indirect selection. Our work contributes to understanding the damage caused by drought and the integration of traits for the indirect selection of drought-tolerant popcorn genotypes.

5.
Plants (Basel) ; 11(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079598

RESUMO

Phosphorus is a non-renewable natural resource that will run out of reserves in the upcoming decades, making it essential to understanding the inheritance of nutrient use efficiency for selecting superior genotypes. This study investigated the additive and non-additive effects of commercially relevant traits for the popcorn crop (grain yield-GY, popping expansion-PE, and expanded popcorn volume per hectare-PV) in different conditions of phosphorus (P) availability in two locations in Rio de Janeiro State, Brazil. Six S7 lines previously selected for P use-L59, L70, and P7, efficient and responsive; and L54, L75, and L80, inefficient and non-responsive-were used as testers in crosses with 15 progenies from the fifth cycle of intrapopulation recurrent selection of UENF-14, with adaptation to the North and Northwest regions of Rio de Janeiro State. Using the Griffing diallel analysis, P use efficiency was predominantly additive in the expression of PE, and non-additive effects were prominent for GY and PV. For obtaining genotypes that are efficient for phosphorus use, it is recommended that heterosis with parents that provide additive gene accumulation for PE be explored.

6.
Plants (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451555

RESUMO

The identification of traits associated with drought tolerance in popcorn is a contribution to support selection of superior plants under soil water deficit. The objective of this study was to choose morphological traits and the leaf greenness index, measured on different dates, to estimate grain yield (GY) and popping expansion (PE), evaluated in a set of 20 popcorn lines with different genealogies, estimated by multiple regression models. The variables were divided into three groups: morpho-agronomic traits-100-grain weight (GW), prolificacy (PR), tassel length (TL), number of tassel branches, anthesis-silking interval, leaf angle (FA) and leaf rolling (FB); variables related to the intensity of leaf greenness during the grain-filling period, at the leaf level, measured by a portable chlorophyll meter (SPAD) and at the canopy level, calculated as the normalized difference vegetation index (NDVI). The inbred lines were cultivated under two water conditions: well-watered (WW), maintained at field capacity, and water stress (WS), for which irrigation was stopped before male flowering. The traits GY (55%) and PE (28%) were most affected by water restriction. Among the morpho-agronomic traits, GW and PR were markedly reduced (>10%). Under dry conditions, the FA in relation to the plant stalk tended to be wider, the FB curvature greater and leaf senescence accelerated (>15% at 22 days after male flowering). The use of multiple regression for the selection of predictive traits proved to be a useful tool for the identification of groups of adequate traits to efficiently predict the economically most important features of popcorn (GY and PE). The SPAD index measured 17 days after male flowering proved useful to select indirectly for GY, while, among the morphological traits, TL stood out for the same purpose. Of all traits, PR was most strongly related with PE under WS, indicating its use in breeding programs. The exploitation of these traits by indirect selection is expected to induce increments in GY and PE.

7.
Plants (Basel) ; 10(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371657

RESUMO

To ensure genetic gains in popcorn breeding programs carried out under drought conditions knowledge about the response of morphophysiological traits of plants to water stress for the selection of key traits is required. Therefore, the objective was to evaluate popcorn inbred lines with agronomically efficient (P2 and P3) and inefficient (L61 and L63) water use and two hybrids (P2xL61 and P3xL63) derived from these contrasting parents, cultivated under two water regimes (WW watered-WW; and water-stressed-WS) in a greenhouse, replicated five times, where each experimental unit consisted of one plant in a PVC tube. Irrigation was applied until stage V6 and suspended thereafter. Individual and combined analyses of variance were performed and the genotypic correlations and relative heteroses estimated. The water use efficient inbred lines were superior in root length (RL), root dry weight (RDW), and net CO2 assimilation rate (A), which were the characteristics that differentiated the studied genotypes most clearly. High heterosis estimates were observed for RL, SDW, leaf width (LW), leaf midrib length (LL), and agronomic water use efficiency (AWUE). The existence of a synergistic association between root angle and length for the characteristics A, stomatal conductance (gs), and chlorophyll concentration (SPAD index) proved most important for the identification and phenotyping of superior genotypes. Based on the study of these characteristics, the higher AWUE of the previously selected inbred lines could be explained. The results reinforced the importance of root physiological and morphological traits to explain AWUE and the possibility of advances by exploiting heterosis, given the morphophysiological superiority of hybrids in relation to parents.

8.
Plants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203591

RESUMO

Drought is a common abiotic stress in tropical and subtropical regions that limits the growth and development of agricultural crops, mainly impacting grain yield. Acting through plant breeding is the most viable alternative for obtaining genotypes more tolerant of environments with stress. This work aims to select popcorn genotypes for environments with drought and to identify discriminating traits for the evaluation of drought tolerance in popcorn germplasm. Fifteen Latin American populations of popcorn were evaluated in water stress (WS) and well-watered (WW) conditions. The evaluated traits were based in morpho-agronomic, physiological and radicular descriptors. Data were submitted to individual and joint ANOVA and GT Biplot analysis. Variability was detected between populations for all traits in both conditions. The drought caused a reduction of 30.61% and 3.5% in grain yield and popping expansion, respectively. Based in GT biplot analysis, 880POP was the most stable in WS and WW, being indicated as a promising population for cultivation in environments with water limitation. This study is going to allow the establishment of a collection of great importance to maize germplasm and to provide information to facilitate the process of selection in breeding programs focused on drought tolerance.

9.
Plants (Basel) ; 9(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679645

RESUMO

The extensive use of nitrogen (N) in agriculture has caused negative impacts on the environment and costs. In this context, two pot experiments were performed under different N levels and harvested at different vegetative stages to assess two popcorn inbred lines (P2 and L80) and their hybrid (F1 = P2 × L80) for the N use, uptake and utilization efficiency (with the inclusion and exclusion of root N content); to find the contrasting N levels and vegetative stages that effect nitrogen use efficiency (NUE) and to understand the relationship between the traits related to NUE. The hybrid and P2 were confirmed better than L80 for all the studied traits. NUE is mainly affected by the shoot dry weight, uptake and utilization efficiency. Extremely low and high N levels were found to be more discriminating for N use and dry weight, respectively. At the V6 (six fully expanded leaf) stage, root N content (RNC) should be considered; in contrast, at the VT (tasseling stage) stage, RNC should not be considered for the uptake and utilization efficiency. The genetic parameter performance for N use, uptake, shoot dry weight and N content could favor the achievement of the genetic gain in advanced segregating generations.

10.
PLoS One ; 14(4): e0215332, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998695

RESUMO

The development of cultivars with an improved nitrogen use efficiency (NUE) together with the application of plant growth-promoting bacteria is considered one of the main strategies for reduction of fertilizers use. In this sense, this study: i) evaluated the effect of Azospirillum brasilense on the initial development of maize genotypes; ii) investigated the influence of A. brasilense inoculation on NUE under nitrogen deficit; and iii) sought for more NUE genotypes with higher responsiveness to A. brasilense inoculation. Twenty-seven maize genotypes were evaluated in three independent experiments. The first evaluated the initial development of maize genotypes with and without A. brasilense (strain Ab-V5) inoculation of seeds on germination paper in a growth chamber. The second and third experiments were carried out in a greenhouse using Leonard pots and pots with substrate, respectively, and the genotypes were evaluated at high nitrogen, low nitrogen and low nitrogen plus A. brasilense Ab-V5 inoculation. The inoculation of seeds with A. brasilense Ab-V5 intensified plant growth, improved biochemical traits and raised NUE under nitrogen deficit. The inoculation of seeds with A. brasilense can be considered an economically viable and environmentally sustainable strategy for maize cultivation.


Assuntos
Azospirillum brasilense/crescimento & desenvolvimento , Genótipo , Germinação , Nitrogênio/metabolismo , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Sementes/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA