Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 144(4): 677-686, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087630

RESUMO

Formation of the Drosophila embryonic termini is controlled by the localized activation of the receptor tyrosine kinase Torso. Both Torso and Torso's presumed ligand, Trunk, are expressed uniformly in the early embryo. Polar activation of Torso requires Torso-like, which is expressed by follicle cells adjacent to the ends of the developing oocyte. We find that Torso expressed at high levels in cultured Drosophila cells is activated by individual application of Trunk, Torso-like or another known Torso ligand, Prothoracicotropic Hormone. In addition to assays of downstream signaling activity, Torso dimerization was detected using bimolecular fluorescence complementation. Trunk and Torso-like were active when co-transfected with Torso and when presented to Torso-expressing cells in conditioned medium. Trunk and Torso-like were also taken up from conditioned medium specifically by cells expressing Torso. At low levels of Torso, similar to those present in the embryo, Trunk and Torso-like alone were ineffective but acted synergistically to stimulate Torso signaling. Our results suggest that Torso interacts with both Trunk and Torso-like, which cooperate to mediate dimerization and activation of Torso at the ends of the Drosophila embryo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Meios de Cultura , Feminino , Proteínas de Fluorescência Verde/metabolismo , Hormônios de Inseto/metabolismo , Ligantes , Folículo Ovariano/metabolismo , Multimerização Proteica , Interferência de RNA
2.
J Cell Sci ; 130(1): 119-131, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034139

RESUMO

Many organs form by invaginating and rolling flat epithelial cell sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. Here, we show that cell-cycle-dependent BMP and TGFß antagonism elicits MHP formation by dynamically regulating interactions between apical (PAR complex) and basolateral (LGL) polarity proteins. TGFß and BMP-activated receptor (r)-SMADs [phosphorylated SMAD2 or SMAD3 (pSMAD2,3), or phosphorylated SMAD1, SMAD5 or SMAD8 (pSMAD1,5,8)] undergo cell-cycle-dependent modulations and nucleo-cytosolic shuttling along the apicobasal axis of the neural plate. Non-canonical TGFß and BMP activity in the cytosol determines whether pSMAD2,3 or pSMAD1,5,8 associates with the tight junction (PAR complex) or with LGL, and whether cell shape changes can occur at the MHP. Thus, the interactions of BMP and TGFß with polarity proteins dynamically modulate MHP formation by regulating r-SMAD competition for tight junctions and r-SMAD sequestration by LGL.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular , Tubo Neural/metabolismo , Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem da Célula , Núcleo Celular/metabolismo , Polaridade Celular , Forma Celular , Embrião de Galinha , Ligantes , Modelos Biológicos , Fosforilação , Transporte Proteico , Transdução de Sinais , Proteínas Smad/metabolismo , Frações Subcelulares/metabolismo
3.
Dev Biol ; 393(2): 270-281, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25034710

RESUMO

Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Botões de Extremidades/embriologia , Polidactilia/genética , Animais , Apoptose , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 7/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/genética , Proliferação de Células , Condrogênese/genética , Citocinas , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/embriologia , Camundongos , Camundongos Transgênicos , Mutação , Polidactilia/embriologia , Fatores de Transcrição SOX9/biossíntese , Transdução de Sinais/genética
4.
Development ; 138(15): 3179-88, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750029

RESUMO

During neural tube closure, specialized regions called hinge points (HPs) display dynamic and polarized cell behaviors necessary for converting the neural plate into a neural tube. The molecular bases of such cell behaviors (e.g. apical constriction, basal nuclear migration) are poorly understood. We have identified a two-dimensional canonical BMP activity gradient in the chick neural plate that results in low and temporally pulsed BMP activity at the ventral midline/median hinge point (MHP). Using in vivo manipulations, high-resolution imaging and biochemical analyses, we show that BMP attenuation is necessary and sufficient for MHP formation. Conversely, BMP overexpression abolishes MHP formation and prevents neural tube closure. We provide evidence that BMP modulation directs neural tube closure via the regulation of apicobasal polarity. First, BMP blockade produces partially polarized neural cells, which retain contact with the apical and basal surfaces but where basolateral proteins (LGL) become apically localized and apical junctional proteins (PAR3, ZO1) become targeted to endosomes. Second, direct LGL misexpression induces ectopic HPs identical to those produced by noggin or dominant-negative BMPR1A. Third, BMP-dependent biochemical interactions occur between the PAR3-PAR6-aPKC polarity complex and phosphorylated SMAD5 at apical junctions. Finally, partially polarized cells normally occur at the MHP, their frequencies inversely correlated with the BMP activity gradient in the neural plate. We propose that spatiotemporal modulation of the two-dimensional BMP gradient transiently alters cell polarity in targeted neuronal cells. This ensures that the neural plate is flexible enough to be focally bent and shaped into a neural tube, while retaining overall epithelial integrity.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Polaridade Celular , Morfogênese/fisiologia , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
5.
Dev Growth Differ ; 55(1): 164-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23277919

RESUMO

During development, a flat neural plate rolls up and closes to form a neural tube. This process, called neural tube closure, is complex and requires morphogenetic events to occur along multiple axes of the neural plate. Recent studies suggest that cell and tissue polarity play a major role in neural tube morphogenesis. While the planar cell polarity pathway is known to be involved in this process, a role for the apicobasal polarity pathway has only recently begun to be elucidated. These studies show that bone morphogenetic proteins can regulate the apicobasal polarity pathway in the neural plate in a cell cycle dependent manner. This dynamically modulates apical junctions in the neural plate, resulting in cell and tissue shape changes that help bend, shape and close the neural tube.


Assuntos
Polaridade Celular , Placa Neural/embriologia , Tubo Neural/embriologia , Animais , Fenômenos Biomecânicos , Padronização Corporal , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Epitélio/metabolismo , Epitélio/fisiologia , Placa Neural/citologia , Placa Neural/fisiologia , Tubo Neural/citologia , Tubo Neural/fisiologia , Organogênese
6.
Dev Dyn ; 241(3): 545-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22274994

RESUMO

BACKGROUND: The amenability of the chick embryo to a variety of manipulations has made it an ideal experimental model organism for over 100 years. The ability to manipulate gene function via in ovo electroporations has further revolutionized its value as an experimental model in the last 15 years. Although in ovo electroporations are simple to conduct in embryos ≥ E2, in ovo electroporations at early E1 stages have proven to be technically challenging due to the tissue damage and embryonic lethality such electroporations produce. RESULTS AND CONCLUSIONS: Here we report our success with in vivo microelectroporations of E1 embryos as young as Hamburger-Hamilton Stage 4 (HH4). We provide evidence that such electroporations can be varied in size and can be spatially targeted. They cause minimal disruption of tissue-size, 3-dimensional morphology, cell survival, proliferation, and cell-fate specification. Our paradigm is easily adapted to a variety of experimental conditions since it does not depend upon the presence of a lumen to enclose the DNA solution during electroporation. It is thus compatible with the in vivo examination of E1 morphogenetic events (e.g., neural tube closure) where preservation of 3-dimensional morphology is critical.


Assuntos
Eletroporação/métodos , Técnicas de Transferência de Genes , Animais , Proliferação de Células , Embrião de Galinha , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Tamanho do Órgão
7.
Birth Defects Res A Clin Mol Teratol ; 94(10): 804-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865775

RESUMO

BACKGROUND: A critical event in neural tube closure is the formation of median hinge points (MHPs) and dorsolateral hinge points (DLHPs). Together, they buckle the ventral midline and elevate and juxtapose the neural folds for proper neural tube closure. Dynamic cell behaviors occur at hinge points (HPs), but their molecular regulation is largely unexplored. Bone morphogenetic proteins (BMPs) have been implicated in a variety of neural tube closure defects, although the underlying mechanisms are poorly understood. METHODS: In this study, we used in vivo electroporations, high-resolution microscopy, and biochemical analyses to explore the role of BMP signaling in chick midbrain neural tube closure. RESULTS: We identified a cell-cycle-dependent BMP gradient in the midbrain neural plate, which results in low-level BMP activity at the MHP. We show that although BMP signaling does not have a role in midbrain cell-fate specification, its attenuation is necessary and sufficient for MHP formation and midbrain closure. BMP blockade induces MHP formation by regulating apical constriction and basal nuclear migration. Furthermore, BMP signaling is critically important for maintaining epithelial organization by biochemically interacting with apicobasal polarity proteins (e.g., PAR3). As a result, prolonged BMP blockade disrupts apical junctions, desegregating the apical (PAR3(+), ZO1(+)) and basolateral (LGL(+)) compartments. Direct apical LGL-GFP misexpression in turn is sufficient to induce ectopic HPs. CONCLUSIONS: BMPs have a critical role in maintaining epithelial organization, a role that is conserved across species and tissue types. Its cell-cycle-dependent modulation in the neural plate dynamically regulates apicobasal polarity and helps to bend, shape, and close the neural tube.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Crista Neural/embriologia , Tubo Neural/embriologia , Neurulação/genética , Animais , Animais Geneticamente Modificados , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Embrião de Galinha , Cinética , Morfogênese/genética , Morfogênese/fisiologia , Crista Neural/metabolismo , Placa Neural/citologia , Placa Neural/embriologia , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Neurulação/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Cold Spring Harb Protoc ; 2012(8)2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22854566

RESUMO

In ovo electroporation of chick embryos at ages ≥ E2 is simple to conduct and widely used to manipulate gene function. However, in ovo electroporation at early E1 stages has so far been unsuccessful because of unacceptable levels of tissue damage and embryonic lethality. Early E1 manipulations in the chick have therefore relied on in vitro electroporation, posing problems for morphogenetic studies in which the long-term preservation (>24 h) of three-dimensional tissue organization is critical. This article describes a simple technique for in vivo electroporation of E1 embryos as young as Hamburger-Hamilton stage 4 (HH4). It uses thin microelectrodes and low voltages, which permit precise localization of gene misexpression while causing minimal tissue damage and embryonic lethality. Critically, it does not depend on the presence of a lumen for DNA injections and can easily be adapted for a wide variety of tissues.


Assuntos
Embrião de Galinha , Eletroporação/métodos , Animais , Análise de Sobrevida
9.
PLoS One ; 7(2): e30644, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363460

RESUMO

The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over- or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over- or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect--specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.


Assuntos
Dictyostelium/metabolismo , Pleiotropia Genética , Proteínas de Protozoários/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Western Blotting , Ciclo Celular/genética , Citoesqueleto/metabolismo , DNA Complementar/genética , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/fisiologia , Regulação para Baixo , Dosagem de Genes/genética , Técnicas de Inativação de Genes , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Fenótipo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Ribossômicas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporos de Protozoários/citologia , Esporos de Protozoários/metabolismo , Temperatura , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA