RESUMO
The fluorescent amine reactive probe Pacific Blue succinimidyl ester (PB) is used for the detection of trace amounts of amines and amino acids by microchip capillary electrophoresis on the Mars Organic Analyzer (MOA). The spectral and chemical properties of PB provide a 200-fold increase in sensitivity and improved resolution compared to fluorescamine derivatization. With the use of cross injection and PB labeling, the MOA detected amino acids at concentrations as low as 75 pM (sub-parts-per-trillion). Micellar electrokinetic chromatography (MEKC) which separates PB-labeled amino acids by their hydrophobicity is also demonstrated. The optimized MEKC conditions (45 mM CHAPSO, pH 6 at 5 degrees C) effectively separated amines and 25 amino acids with enantiomeric resolution of alanine, serine, and citrulline. Samples from the Yungay Hills region in the Atacama Desert, Chile, and from the Murchison meteorite are successfully analyzed using both techniques, and amino acids are found in the parts-per-billion range. Abiotic amino acids such as beta-alanine and epsilon-aminocaprioc acid are detected along with several neutral and acidic amino acids in the Murchison sample. The Atacama Desert sample is found to contain homochiral L-alanine and L-serine indicating the presence of extant or recently extinct life.
Assuntos
Aminas/análise , Aminoácidos/análise , Eletroforese em Microchip/métodos , Corantes Fluorescentes/química , Marte , Succinimidas/química , Cromatografia , Clima Desértico , Exobiologia , Cinética , Meteoroides , Micelas , Sensibilidade e EspecificidadeRESUMO
A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17â mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20â h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available.
Assuntos
Modelos Químicos , Processos Fotoquímicos , Energia Solar , Água/química , Eletroquímica , Hidrogênio/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos TestesRESUMO
We describe a sample-processing micro-reactor that utilizes 60 GHz RF radiation with approximately 730 mW of output power. The instrument design and performance characterization are described and then illustrated with modeling and experimental studies. The micro-reactor's efficiency on affecting hydrolysis of chemical bonds similar to those within large complex molecules was demonstrated: a disaccharide-sucrose-was hydrolyzed completely under micro-reactor conditions. The products of the micro-reactor-facilitated hydrolysis were analyzed using mass spectroscopy and proton nuclear magnetic resonance analytical techniques.
Assuntos
Exobiologia/instrumentação , Microtecnologia/instrumentação , Planetas , Ondas de Rádio , Frutose/metabolismo , Glucose/metabolismo , Hidrólise , Sacarose/metabolismo , TemperaturaRESUMO
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Assuntos
Ácidos/análise , Aminas/análise , Aminoácidos/análise , Eletroforese Capilar/instrumentação , Meio Ambiente Extraterreno , Marte , Salinidade , Soluções Tampão , California , Cátions/química , Ácido Edético/química , Eletroforese Capilar/métodos , Cloreto de Magnésio/química , Padrões de Referência , Sais/química , Cloreto de Sódio/química , EspanhaRESUMO
Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).
Assuntos
Meio Ambiente Extraterreno/química , Marte , Solo/análise , Voo Espacial/instrumentação , Água/análise , Clima Desértico , Pressão , TemperaturaRESUMO
The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.
Assuntos
Meio Ambiente Extraterreno/química , Marte , Compostos Orgânicos/análise , Oxidantes/análise , Voo Espacial/instrumentação , Aminoácidos/química , Eletroforese Capilar , Fluorescamina/química , Procedimentos Analíticos em Microchip , EstereoisomerismoRESUMO
Inner-sphere electron-transfer reorganization energies of Zn(protoporphyrin IX) and Zn(octaethylporphyrin) are determined from band-shape analyses of the first ionization obtained by gas-phase valence photoelectron spectroscopy. The experimentally determined total inner-sphere reorganization energies for self-exchange (120-140 meV) indicate that structural changes upon oxidation are largely confined to the porphyrin ring, and substituents on the ring or solvent and other environmental factors make smaller contributions. Computational estimates by different models vary over a wide range and are sensitive to numerical precision factors for these low reorganization energies. Of current computational models that are widely available and practical for molecules of this size, functionals that contain a mixture of Hartree-Fock exchange and DFT exchange-correlation appear to be the most applicable.