Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(10): 2551-2570, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32515071

RESUMO

Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.


Assuntos
Arabidopsis/microbiologia , Penicillium/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Penicillium/fisiologia , Fotossíntese , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Proteoma/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
2.
Plant Cell Environ ; 42(5): 1729-1746, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30480826

RESUMO

A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.


Assuntos
Arabidopsis/microbiologia , Arabidopsis/fisiologia , Expressão Gênica/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Alternaria/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Penicillium/metabolismo , Fotossíntese/efeitos dos fármacos
3.
Plant Cell Environ ; 42(9): 2627-2644, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222760

RESUMO

Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.


Assuntos
Alternaria , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Fotossíntese/efeitos dos fármacos , Proteoma
4.
Mol Plant Microbe Interact ; 30(7): 566-577, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398840

RESUMO

Sinorhizobium meliloti can translocate over surfaces. However, little is known about the regulatory mechanisms that control this trait and its relevance for establishing symbiosis with alfalfa plants. To gain insights into this field, we isolated Tn5 mutants of S. meliloti GR4 with impaired surface motility. In mutant strain GRS577, the transposon interrupted the ntrY gene encoding the sensor kinase of the NtrY/NtrX two-component regulatory system. GRS577 is impaired in flagella synthesis and overproduces succinoglycan, which is responsible for increased biofilm formation. The mutant also shows altered cell morphology and higher susceptibility to salt stress. GRS577 induces nitrogen-fixing nodules in alfalfa but exhibits decreased competitive nodulation. Complementation experiments indicate that both ntrY and ntrX account for all the phenotypes displayed by the ntrY::Tn5 mutant. Ectopic overexpression of VisNR, the motility master regulator, was sufficient to rescue motility and competitive nodulation of the transposant. A transcriptome profiling of GRS577 confirmed differential expression of exo and flagellar genes, and led to the demonstration that NtrY/NtrX allows for optimal expression of denitrification and nifA genes under microoxic conditions in response to nitrogen compounds. This study extends our knowledge of the complex role played by NtrY/NtrX in S. meliloti.


Assuntos
Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Elementos de DNA Transponíveis/genética , Flagelos/genética , Flagelos/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Medicago sativa/microbiologia , Mutagênese Insercional , Fixação de Nitrogênio/genética , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose
5.
Plant Physiol ; 172(3): 1989-2001, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663407

RESUMO

Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms.


Assuntos
Alternaria/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Glucose-6-Fosfato Isomerase/metabolismo , Plastídeos/enzimologia , Compostos Orgânicos Voláteis/farmacologia , Alternaria/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Citocininas/metabolismo , Luz , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Mutação/genética , Fotossíntese/efeitos da radiação , Plastídeos/efeitos dos fármacos , Proteoma/metabolismo , Amido/metabolismo
6.
Front Plant Sci ; 12: 637976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747018

RESUMO

Microorganisms produce volatile compounds (VCs) with molecular masses of less than 300 Da that promote plant growth and photosynthesis. Recently, we have shown that small VCs of less than 45 Da other than CO2 are major determinants of plant responses to fungal volatile emissions. However, the regulatory mechanisms involved in the plants' responses to small microbial VCs remain unclear. In Arabidopsis thaliana plants exposed to small fungal VCs, growth promotion is accompanied by reduction of the thiol redox of Calvin-Benson cycle (CBC) enzymes and changes in the levels of shikimate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway-related compounds. We hypothesized that plants' responses to small microbial VCs involve post-translational modulation of enzymes of the MEP and shikimate pathways via mechanisms involving redox-activated photosynthesis signaling. To test this hypothesis, we compared the responses of wild-type (WT) plants and a cfbp1 mutant defective in a redox-regulated isoform of the CBC enzyme fructose-1,6-bisphosphatase to small VCs emitted by the fungal phytopathogen Alternaria alternata. Fungal VC-promoted growth and photosynthesis, as well as metabolic and proteomic changes, were substantially weaker in cfbp1 plants than in WT plants. In WT plants, but not in cfbp1 plants, small fungal VCs reduced the levels of both transcripts and proteins of the stromal Clp protease system and enhanced those of plastidial chaperonins and co-chaperonins. Consistently, small fungal VCs promoted the accumulation of putative Clp protease clients including MEP and shikimate pathway enzymes. clpr1-2 and clpc1 mutants with disrupted plastidial protein homeostasis responded weakly to small fungal VCs, strongly indicating that plant responses to microbial volatile emissions require a finely regulated plastidial protein quality control system. Our findings provide strong evidence that plant responses to fungal VCs involve chloroplast-to-nucleus retrograde signaling of redox-activated photosynthesis leading to proteostatic regulation of the MEP and shikimate pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA