RESUMO
Data on historical soil moisture is crucial for assessing and responding to droughts that commonly occur in climate change-affected countries. The Himalayan temperate forests in Pakistan are particularly at risk of climate change. Developing nations lack the means to gather surface soil moisture (SSM) information. Tree rings are one way to bridge this gap. Here, we employed dendrochronological methods on climate-sensitive tree rings from Abies pindrow to reconstruct the SSM in the Western Himalayan mountain region of Pakistan from 1855 to 2020. December (r = 0.41), May (r = 0.40), and June (r = 0.65) SSMs were found to be the limiting factors for A. pindrow growth. However, only the June SSM showed reconstruction possibility (coefficient of efficiency = 0.201 and reduction of error = 0.325). Over the studied period, we found 6 years (wet year) when June SSM was above the threshold of 32.04 (mean + 2 δ) and 1 year (dry year) when June SSM was below the threshold of 21.28 (mean - 2 δ). It was revealed that 1921 and 1917 were the driest and wettest SSM of all time, with means of 19.34 and 36.49, respectively. Our study shows that winter soil moisture is critical for the growing season in the context of climate change. Climate change has broad impacts on tree growth in the Western Himalayas. This study will assist various stakeholders in understanding and managing local and regional climate change.
Assuntos
Abies , Solo , Paquistão , Florestas , Mudança Climática , SecasRESUMO
Soil pollution has become a serious environmental problem worldwide due to rapid industrialization and urbanization. Zinc (Zn) contamination has raised concerns about potential effects on plants and human health. This study was conducted to assess the capability of four biofuel plants: Abelmoschus esculentus, Avena sativa, Guizotia abyssinica, and Glycine max to remediate and restore Zn contaminated soil. Selected plants were grown in soil exposed to different Zn treatments (50, 100, 200, 300, 400, 600, 800 and 1000 mg Zn kg-1) for 12 weeks. Soil without spike taken as control. Zn induced toxicity significantly (p < 0.05) reduced seed germination and inhibited plant growth and leaf chlorophyll content. The investigated plants can tolerate a soil content of 800 mg Zn kg-1 with the exception of A. sativa, which was most tolerant to high Zn concentrations (1000 mg Zn kg-1) for all growth criteria. Moreover, increasing Zn content in soil resulted in a significant (p < 0.05) increase in Zn accumulation in various tissues of the four biofuel plants. According to phytoremediation efficiency, the four biofuel plants studied were arranged as follows: A. sativa (5.05%) > A. esculentus (4.15%) > G. max (2.31%) > G. abyssinica (1.17%). This study concluded that all tested biofuel plants species, especially A. sativa exhibited high Zn concentrations in roots and shoots, high Zn uptake capability, high tolerance, and high biomass at 50-800 mg Zn kg-1 treatments. Consequently, these biofuel plants are excellent candidates for phytoremediation in Zn contaminated soils.
Heavy metal contamination of soil poses a serious threat to the environment. Physical and chemical remediation methods are commonly used to remediate metal contaminated sites. It is not commercially viable, except that it is harmful and causes soil degradation. Alternatively, biological remediation techniques are cheap and environmentally friendly. Different plant species have been found to differ in their ability to accumulate metals under contaminated soil. Therefore, the present study provides a unique opportunity to study the metal accumulation potential of four biofuel plants (Abelmoschus esculentus, Avena sativa, Guizotia abyssinica and Glycine max) under zinc metal spiked soils. These plants are able to grow rapidly by developing a strong root system, high biomass production, and high tolerance to metal toxicity that helps them survive in contaminated soil environments. The investigated biofuel plant can be used to decontaminate contaminated sites and serves as a source of commercially valuable products that extract metals from biomass through combustion.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Zinco , Biodegradação Ambiental , Biocombustíveis , Poluentes do Solo/análise , Plantas , Solo , Metais Pesados/análiseRESUMO
Contamination of chromium signifies one of the major threats to soil system. Phytoremediation is a promising technique to reclaim metal-contaminated soil using plants which are capable to tolerate and accumulate heavy metals within in their tissues. The experiment reported in this article was carried out with six biofuel plant species, Cyamopsis tetragonoloba, Glycine max, Avena sativa, Abelmoschus esculentus, Sesamum indicum and Guizotia abyssinica, were subjected to eight Cr concentrations (0.5, 2.5, 5, 10, 25, 50, 75 and 100 mg kg-1 soil) to investigate Cr toxicity, tolerance and accumulation. After 12 weeks of experiment, Cr phytotoxicity on morphological and biochemical parameters were evaluated. For six plant species, seed germination and most of growth parameters were significantly (p < 0.05) reduced under high Cr stress. Chlorophyll contents were also decreased with increased Cr concentrations. Accumulation of Cr was higher in roots than shoot in all studied plants. Significant Cr accumulation was in the order of C. tetragonoloba > A. sativa > A. esculentus > S. indicum > G. max > G. abyssinica. Bioconcentration factor, bioaccumulation coefficient, translocation factor and phytoremdiation ratio suggested that C. tetragonoloba, A. sativa and A. esculentus being more tolerant; having higher Cr accumulation and could be a high efficient plants for reclamation of Cr-contaminated soils.
Assuntos
Cromo/química , Poluentes do Solo/análise , Biodegradação Ambiental , Biocombustíveis , Solo/químicaRESUMO
PURPOSE: For children with neurodevelopmental disabilities (CWNDs), early diagnosis that leads to early intervention with regular targeted therapies is critical. In Qatar, private therapy centres that address this demand often have highly exclusive prices restricting families from availing them. This paper examines the challenges faced by families with CWNDs, as well as various financial and systemic obstacles, from the vantage point of these centres, all of which culminate in an extraordinarily high disability price tag for disability families in Qatar. METHODS: This study is based on qualitative, semi-structured, and in-depth interviews with private therapy centres and developmental paediatricians. RESULTS: Therapy centre representatives expressed common struggles in lengthy and cumbersome administration and licencing procedures, difficulty in hiring and retaining high quality staff, and expenses that need to be paid to the state. From their experience, families largely struggle with delayed diagnoses that significantly slow down intervention plans and therapies as well as staggeringly high financial costs with a dearth of funding options. CONCLUSIONS: We recommend sincere engagement, dialogue, and cooperation between multiple stakeholders; a supportive ecosystem to balance and distribute the demand that includes schools and parents; as well more efficient administrative procedures and recruitment strategies.