Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(10): e2305346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875723

RESUMO

The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fluoretos , Sais , Nanopartículas/química , Análise Espectral Raman/métodos , Corantes Fluorescentes/química , Nanopartículas Metálicas/química , Ouro/química
2.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535481

RESUMO

Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.). Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare. This bimodality can be achieved by successive image acquisitions involving different and independent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by using a single probe combining a complete set of physical and chemical characteristics, in order to record complementary views of the same biological object at the same time. In this scenario, and focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inorganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole. If in the first type of system, there is frequent concern that at some point the dye may dissociate from the magnetic dipole, it may not in the second type. This review aims to present a summary of current activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent nano-objects.

3.
4.
Nanomaterials (Basel) ; 10(1)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940905

RESUMO

An alternative route for metal hydrogenation has been investigated: cold plasma hydrogen implantation on polyol-made transition metal nanoparticles. This treatment applied to a challenging system, Ni-H, induces a re-ordering of the metal lattice, and superstructure lines have been observed by both Bragg-Brentano and grazing incidence X-ray diffraction. The resulting intermetallic structure is similar to those obtained by very high-pressure hydrogenation of nickel and prompt us to suggest that plasma-based hydrogen implantation in nanometals is likely to generate unusual metal hydride, opening new opportunities in chemisorption hydrogen storage. Typically, almost isotropic in shape and about 30 nm sized hexagonal-packed Ni2H single crystals were produced starting from similarly sized cubic face-centred Ni polycrystals.

5.
Anal Chem ; 79(1): 187-94, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17194138

RESUMO

Self-assembled enzyme aggregates, prepared from magnetic iron oxide nanoparticles, avidin, and a biotinylated redox enzyme, were shown particularly useful for the simple, fast, and efficient construction of highly enzyme-loaded electrodes with the help of a magnet. The approach was illustrated in the case of the bioelectrocatalytic oxidation of NADH by a diaphorase oxidoreductase in the presence of a ferrocene mediator. Two different self-assembling procedures were tested, taking advantage of the spontaneous aggregation of the nanoparticles in the presence of avidin and also of the multivalency binding of biotinylated diaphorase toward avidin. Activities of the bound and unbound diaphorase were systematically controlled allowing determination of the number of active biotinylated diaphorase per nanoparticle incorporated within each magnetic enzyme aggregate. An active enzyme loading capacity of up to 2.35 nmol mg-1 was found for the best nanostructured enzyme assembly, which is 200 times better than for commercialized magnetic micrometer-sized beads coated with streptavidin and saturated with diaphorase. With the help of a permanent magnet, the magnetic enzyme aggregates were finally magnetically collected as a film on the surface of a small screen-printed carbon electrode and the catalytic currents recorded by cyclic voltammetry. From the analysis of the steady-state catalytic current responses and the kinetic rate constants of biotinylated diaphorase, it was possible to determine the enzyme concentration within the magnetic films. Owing to the high enzyme loading in the aggregates of nanoparticles (i.e., 130 microM), the catalytic current responses were definitely higher than the ones measured at an electrode coated with a closed-packed monolayer of diaphorase or at an electrode covered with a film of magnetic micrometer-sized streptavidin beads saturated with diaphorase.


Assuntos
Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Magnetismo , NAD/química , Nanopartículas/química , Avidina/química , Biotinilação , Catálise , Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/metabolismo , Eletroquímica , Eletrodos , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre , Cinética , Microesferas , NAD/metabolismo , Oxirredução , Peroxidases/química , Peroxidases/metabolismo , Sensibilidade e Especificidade , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA