Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(13): e1905505, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078240

RESUMO

Highly vascularized complex liver tissue is generally divided into lobes, lobules, hepatocytes, and sinusoids, which can be viewed under different types of lens from the micro- to macro-scale. To engineer multiscaled heterogeneous tissues, a sophisticated and rapid tissue engineering approach is required, such as advanced 3D bioprinting. In this study, a preset extrusion bioprinting technique, which can create heterogeneous, multicellular, and multimaterial structures simultaneously, is utilized for creating a hepatic lobule (≈1 mm) array. The fabricated hepatic lobules include hepatic cells, endothelial cells, and a lumen. The endothelial cells surround the hepatic cells, the exterior of the lobules, the lumen, and finally, become interconnected with each other. Compared to hepatic cell/endothelial cell mixtures, the fabricated hepatic lobule shows higher albumin secretion, urea production, and albumin, MRP2, and CD31 protein levels, as well as, cytochrome P450 enzyme activity. It is found that each cell type with spatial cell patterning in bioink accelerates cellular organization, which could preserve structural integrity and improve cellular functions. In conclusion, preset extruded hepatic lobules within a highly vascularized construct are successfully constructed, enabling both micro- and macro-scale tissue fabrication, which can support the creation of large 3D tissue constructs for multiscale tissue engineering.


Assuntos
Bioimpressão , Fígado , Linhagem Celular , Células Endoteliais , Humanos , Fígado/citologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
2.
Nat Commun ; 15(1): 8257, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333490

RESUMO

Spatiotemporal control of full freedoms of polarized light emission is crucial in multiplexed optical computing, encryption and communication. Although recent advancements have been made in active emission or passive conversion of polarized light through solution-processed nanomaterials or metasurfaces, these design paths usually encounter limitations, such as small polarization degrees, low light utilization efficiency, limited polarization states, and lack of spatiotemporal control. Here, we addressed these challenges by integrating the spatiotemporal modulation of the LED device, the precise control and efficient polarization emission through nanomaterial assembly, and the programmable patterning/positioning using 3D printing. We achieved an extremely high degree of polarization for both linearly and circularly polarized emission from ultrathin inorganic nanowires and quantum nanorods thanks to the shear-force-induced alignment effect during the protruding of printing filaments. Real-time polarization modulation covering the entire Poincaré sphere can be conveniently obtained through the programming of the on-off state of each LED pixel. Further, the output polarization states can be encoded by an ordered chiral plasmonic film. Our device provides an excellent platform for multiplexing spatiotemporal polarization information, enabling visible light communication with an exceptionally elevated level of physical layer security and multifunctional encrypted displays that can encode both 2D and 3D information.

3.
ACS Biomater Sci Eng ; 7(7): 3082-3087, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125522

RESUMO

Cells in 3D behave differently than cells in 2D. We develop a new method for the fabrication of 2D and 3D cell cluster arrays on an identical substrate using a cell-friendly photoresist, which enables comparative study between cells in 2D and 3D cell clusters. The fabricated cell cluster arrays maintain their structure up to 3 days with good viability. Using this method, 2D and 3D cancer cell clusters with comparable sizes are fabricated, and natural killer (NK) cell cytotoxicity assays are performed to assess how dimensionality of cancer cell clusters influence their susceptibility to immune cell-mediated killing.


Assuntos
Células Matadoras Naturais , Linhagem Celular Tumoral
4.
PLoS One ; 15(9): e0239544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966339

RESUMO

Injection laryngoplasty (IL) has been used to treat various types of glottal insufficiency. The precise volume and location of the injected materials impact the outcomes. However, exactly how increasing volumes of material are distributed is unknown. In fact, the amount of IL material required to medialize a vocal cord tends to be determined empirically. Thus, the goal of this study was to investigate the pattern of IL material distribution by checking serial micro-computed tomography (MCT) and pressure changes during ILs. This experimental study used 10 excised canine larynges. Experimental devices included the IL syringe, pressure sensor, infusion pump, fixed frame, and monitoring system. We injected calcium hydroxyapatite in the thyroarytenoid muscle; whenever 0.1 mL of material was injected, we obtained an MCT scan while simultaneously measuring the pressure. After the experiments, we performed histologic analyses. MCT analyses showed that materials initially expanded centrifugally and then expanded in all directions within the muscle. The pressure initially increased rapidly but then remained relatively constant until the point at which the materials expanded in multiple directions. Histologic analyses showed that the IL material tended to expand within the epimysium of the thyroarytenoid muscle. However, in some cases, the MCT revealed that there were leakages to the surrounding space with a corresponding pressure drop. If the IL material passes through the epimysium, leakage can occur in the surrounding space, which can account for the reduction in resistance during ILs.


Assuntos
Laringoplastia/métodos , Animais , Materiais Biocompatíveis/administração & dosagem , Cães , Durapatita/administração & dosagem , Técnicas In Vitro , Injeções/efeitos adversos , Injeções/instrumentação , Injeções/métodos , Músculos Laríngeos/diagnóstico por imagem , Músculos Laríngeos/cirurgia , Laringe/diagnóstico por imagem , Laringe/cirurgia , Modelos Animais , Pressão , Prega Vocal/diagnóstico por imagem , Prega Vocal/cirurgia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA