RESUMO
Despite the identification of numerous bioplastic-degrading bacteria, the inconsistent rate of bioplastic degradation under differing cultivation conditions limits the intercomparison of results on biodegradation kinetics. In this study, we isolated a poly (Æ-caprolactone) (PCL)-degrading bacterium from a plastic-contaminated landfill and determined the principle-based biodegradation kinetics in a confined model system of varying cultivation conditions. Bacterial degradation of PCL films synthesized by different polymer number average molecular weights (Mn) and concentrations (% w/v) was investigated using both solid and liquid media at various temperatures. As a result, the most active gram-negative bacterial strain at ambient temperature (28 °C), designated CY2-9, was identified as Aquabacterium sp. Based on 16 S rRNA gene analysis. A clear zone around the bacterial colony was apparently exhibited during solid cultivation, and the diameter sizes increased with incubation time. During biodegradation processes in the PCL film, the thermal stability declined (determined by TGA; weight changes at critical temperature), whereas the crystalline proportion increased (determined by DSC; phase transition with temperature increment), implying preferential degradation of the amorphous region in the polymer structure. The surface morphologies (determined by SEM; electron optical system) were gradually hydrolyzed, creating destruction patterns as well as alterations in functional groups on film surfaces (determined by FT-IR; infrared spectrum of absorption or emission). In the kinetic study based on the weight loss of the PCL film (4.5 × 104 Da, 1% w/v), â¼1.5 (>±0.1) × 10-1 day-1 was obtained from linear regression for both solid and liquid media cultivation at 28 °C. The biodegradation efficiencies increased proportionally by a factor of 2.6-7.9, depending on the lower polymer number average molecular weight and lower concentration. Overall, our results are useful for measuring and/or predicting the degradation rates of PCL films by microorganisms in natural environments.
Assuntos
Plásticos , Poliésteres , Poliésteres/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Polímeros , Bactérias/metabolismoRESUMO
Strain KSB-15 T was isolated from an orchard soil that had been contaminated with the insecticide dichlorodiphenyltrichloroethane for about 60 years. The 16S rRNA gene sequence of this strain showed the highest sequence similarities with those of Oleiharenicola alkalitolerans NVTT (95.3%), Opitutus terrae PB90-1 T (94.8%), and Oleiharenicola lentus TWA-58 T (94.7%) among type strains, which are members of the family Opitutaceae within the phylum Verrucomicrobia. Strain KSB-15 T was an obligate aerobe, Gram-negative, non-motile, coccoid or short rod with the cellular dimensions of 0.37-0.62 µm width and 0.43-0.72 µm length. The strain grew at temperatures between 15-37 °C (optimum, 25 °C), at a pH range of 5.0-11.0 (optimum, pH 6.0), and at a NaCl concentration of 0-3% (w/v) (optimum, 0%). It contained menaquinone-7 (MK-7) as the major isoprenoid quinone (94.1%), and iso-C15:0 (34.9%) and anteiso-C15:0 (29.0%) as the two major fatty acids. The genome of strain KSB-15 T was composed of one chromosome with a total size of 4,320,198 bp, a G + C content of 64.3%, 3,393 coding genes (CDS), 14 pseudogenes, and 52 RNA genes. The OrthoANIu values, In silico DDH values and average amino acid identities between strain KSB-15 T and the members of the family Opitutaceae were 71.6 ~ 73.0%, 19.0 ~ 19.9%, and 55.9 ~ 62.0%, respectively. On the basis of our polyphasic taxonomic study, we conclude that strain KSB-15 T should be classified as a novel genus of the family Opitutaceae, for which the name Horticcoccus luteus gen. nov., sp. nov. is proposed.The type strain is KSB-15 T (= KACC 22271 T = DSM 113638 T).
Assuntos
DDT , Inseticidas , Aminoácidos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Solo , Terpenos , Verrucomicrobia/genética , Vitamina K 2/químicaRESUMO
Rapid global urbanization has made environmental amenities scarce despite their considerable advantages, ranging from aesthetics to health benefits. Street greenness is a key urban environmental amenity. This study developed a green index as an objective measure of greenness using street view images and assessed its predictive power along with that of other environmental amenities for metropolitan housing prices. Spatial interpolation was used to transform point data into areal data, enabling effective analysis of a dataset covering an entire metropolis. A series of hedonic models revealed that (1) street greenness is significantly and negatively associated with housing prices, (2) a traditional greenness indicator and the green index provide complementary information, indicating that they could be used for different purposes, and (3) environmental amenities, in general, demonstrated significant relationships with housing prices. Our analysis strategy including spatial interpolation can be widely employed for studies using different types of data. The findings demonstrating a complementary relationship between our two greenness indicators provide valuable insights for policymakers and urban planners to improve street-level greenness and green accessibility. Considering the significance of environmental amenities, this study provides practical approaches for executing sustainable and healthy city development.
RESUMO
Plastic pollution has been recognized as a serious environmental problem, and microbial degradation of plastics is a potential, environmentally friendly solution to this. Here, we analyzed and compared microbial communities on waste plastic films (WPFs) buried for long periods at four landfill sites with those in nearby soils to identify microbes with the potential to degrade plastics. Fourier-transform infrared spectroscopy spectra of these WPFs showed that most were polyethylene and had signs of oxidation, such as carbon-carbon double bonds, carbon-oxygen single bonds, or hydrogen-oxygen single bonds, but the presence of carbonyl groups was rare. The species richness and diversity of the bacterial and fungal communities on the films were generally lower than those in nearby soils. Principal coordinate analysis of the bacterial and fungal communities showed that their overall structures were determined by their geographical locations; however, the microbial communities on the films were generally different from those in the soils. For the pulled data from the four landfill sites, the relative abundances of Bradyrhizobiaceae, Pseudarthrobacter, Myxococcales, Sphingomonas, and Spartobacteria were higher on films than in soils at the bacterial genus level. At the species level, operational taxonomic units classified as Bradyrhizobiaceae and Pseudarthrobacter in bacteria and Mortierella in fungi were enriched on the films. PICRUSt analysis showed that the predicted functions related to amino acid and carbohydrate metabolism and xenobiotic degradation were more abundant on films than in soils. These results suggest that specific microbial groups were enriched on the WPFs and may be involved in plastic degradation.
Assuntos
Micobioma , Plásticos/metabolismo , Microbiologia do Solo , Bactérias , Solo/química , Biodegradação Ambiental , Instalações de Eliminação de Resíduos , Carbono/metabolismo , Oxigênio/metabolismo , República da CoreiaRESUMO
This article presents a database cleaned and generated for analyzing the economic impact of subway network on housing prices in metropolitan areas. The provision of transit networks and accompanying improvement in accessibility induce various impact and we focused on the economic impact reflected in housing prices. Although our emphasis is on transit accessibility and housing prices, the dataset presented is applicable to other analyses. It includes a wide range of variables closely related to housing prices such as housing properties, local demographic characteristics, local amenities, and seasonal control variables. Various distance variables constructed in a geographic information system environment using public data are useful for exploring the environmental impact on housing prices. These data cover four metropolitan areas-Busan, Daegu, Daejeon, and Gwangju-and provide accurate information on their metropolitan structures distinct from the capital city, Greater Seoul. An empirical analysis performed by Ahn et al. [1] is based on this dataset.