Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 314: 137657, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581120

RESUMO

In this study, natural pyrite (NP) was used to activate peroxydisulfate (PDS) for imidacloprid (IMD) degradation. NP was characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Effects of key reaction parameters (NP dosage, PDS concentration and initial pH) and co-existing ions on IMD degradation in the NP/PDS system were investigated. Quenching experiments and electron spin resonance (ESR) tests identified the existence of sulfate radical (SO4•-), hydroxyl radical (•OH), singlet oxygen (1O2) and superoxide radical (O2•-). The cumulative concentration of SO4•- and •OH were quantified by the formation of benzoquinone (BQ) and p-hydroxybenzoic acid (HBA), respectively. Meanwhile, more than 60% of methylphenyl sulfoxide (PMSO) was selectively converted to methylphenyl sulfone (PMSO2), revealing that Fe(IV) was dominant in the NP/PDS system. The order of contribution of the three reactive species in the NP/PDS system was Fe(IV) > â€¢OH > SO4•- (contributions of 1O2 and O2•- were negligible). Fe(II) released from NP played a crucial role in PDS activation, and sulfur species in NP could also boost Fe(III)/Fe(II) cycle and contribute to the generation of reactive species. Further, the possible degradation pathways of IMD have been proposed based on the detected intermediates using high-performance liquid chromatography-mass spectrometry (HPLC-MS), and the toxicity (including acute toxicity, developmental toxicity and mutagenicity) of these intermediates have been predicted using Toxicity Estimation Software Tool (T.E.S.T). Moreover, NP/PDS system was applied in four natural water bodies and IMD degradation efficiency reached more than 97% after adjusting the pH to 3. The fluorescence excitation-emission matrix (EEM) spectra showed that in addition to IMD, NP/PDS system could also remove other impurities.


Assuntos
Compostos Férricos , Enxofre , Oxirredução , Compostos Ferrosos
2.
Chemosphere ; 317: 137883, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693481

RESUMO

Quinones are potential pollutants and redox active compounds widely distributed in environmental media. In this study, methyl-p-benzoquinone (MBQ) was introduced into Fe(III)/peroxydisulfate system (Fe(III)/PDS) to expedite the conversion of Fe(III) to Fe(II) and the degradation of atrazine (ATZ), ultimately establishing an environmentally friendly system of "treating pollution with pollution". MBQ/Fe(III)/PDS system showed superior performance to traditional Fe(II)/PDS system in pH range of 2-7. Sulfate radical (SO4•-) and hydroxyl radical (•OH) were confirmed to exist in MBQ/Fe(III)/PDS system according to alcohol quenching experiments and ESR tests. Meanwhile, stable 80% of η[PMSO2] (i.e., the molar ratio of PMSO2 generation to PMSO consumption) was achieved and manifested that highly reactive substance Fe(IV) also participated in MBQ/Fe(III)/PDS system. The spontaneous transformation of MBQ and methyl-hydroquinone (MHQ) drove Fe(III)/Fe(II) cycle, during which MHQ induced Fe(III) reduction and Fe(II) regeneration. Transformation pathways of ATZ were proposed based on HPLC-MS detection and DFT calculation and ATZ degradation could be initiated by lateral chain oxidation and dechlorination-hydroxylation. The acute toxicity, bioaccumulation factor, developmental toxicity and mutagenicity of ATZ and its degradation intermediates were evaluated by Toxicity Estimation Software Tool, and the luminescent bacteria test was conducted to investigate the acute toxicity variation of the reaction solution. Cl- obviously inhibited ATZ degradation and three main by-products generation, while humic acid (HA) had little effect on them probably due to the established balance between inhibition (some components in HA competed to consume reactive species) and acceleration (quinone units in HA also facilitated Fe(III)/Fe(II) cycle).


Assuntos
Atrazina , Poluentes Químicos da Água , Atrazina/química , Compostos Férricos , Quinonas , Teoria da Densidade Funcional , Oxirredução , Compostos Ferrosos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA