Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Cell Physiol ; 238(10): 2206-2227, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659096

RESUMO

Podocytes are terminally differentiated kidney cells acting as the main gatekeepers of the glomerular filtration barrier; hence, inhibiting proteinuria. Podocytopathies are classified as kidney diseases caused by podocyte damage. Different genetic and environmental risk factors can cause podocyte damage and death. Recent evidence shows that mitochondrial dysfunction also contributes to podocyte damage. Understanding alterations in mitochondrial metabolism and function in podocytopathies and whether altered mitochondrial homeostasis/dynamics is a cause or effect of podocyte damage are issues that need in-depth studies. This review highlights the roles of mitochondria and their bioenergetics in podocytes. Then, factors/signalings that regulate mitochondria in podocytes are discussed. After that, the role of mitochondrial dysfunction is reviewed in podocyte injury and the development of different podocytopathies. Finally, the mitochondrial therapeutic targets are considered.

2.
J Cell Physiol ; 237(9): 3435-3448, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775725

RESUMO

The ability of stem cells for self-renewing, differentiation, and regeneration of injured tissues is believed to occur via the hormetic modulation of nuclear/mitochondrial signal transductions. The evidence now indicates that in damaged tissues, the mitochondria set off the alarm under oxidative stress conditions, hence they are the central regulators of stem cell fate decisions. This review aimed to provide an update to a broader concept of stem cell fate in stress conditions of damaged tissues, and insights for the mitochondrial hormesis (mitohormesis), including the integrated stress response (ISR), mitochondrial dynamics, mitochondria uncoupling, unfolded protein response, and mitokines, with implications for the control of stem cells programing in a successful clinical cell therapy.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Diferenciação Celular , Hormese , Mitocôndrias/metabolismo , Células-Tronco/metabolismo
3.
Mar Drugs ; 18(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660119

RESUMO

Oxidative stress (OS) plays a pivotal role in diabetes mellitus (DM) onset, progression, and chronic complications. Hyperglycemia-induced reactive oxygen species (ROS) have been shown to reduce insulin secretion from pancreatic ß-cells, to impair insulin sensitivity and signaling in insulin-responsive tissues, and to alter endothelial cells function in both type 1 and type 2 DM. As a powerful antioxidant without side effects, astaxanthin (ASX), a xanthophyll carotenoid, has been suggested to contribute to the prevention and treatment of DM-associated pathologies. ASX reduces inflammation, OS, and apoptosis by regulating different OS pathways though the exact mechanism remains elusive. Based on several studies conducted on type 1 and type 2 DM animal models, orally or parenterally administrated ASX improves insulin resistance and insulin secretion; reduces hyperglycemia; and exerts protective effects against retinopathy, nephropathy, and neuropathy. However, more experimental support is needed to define conditions for its use. Moreover, its efficacy in diabetic patients is poorly explored. In the present review, we aimed to identify the up-to-date biological effects and underlying mechanisms of ASX on the ROS-induced DM-associated metabolic disorders and subsequent complications. The development of an in-depth research to better understand the biological mechanisms involved and to identify the most effective ASX dosage and route of administration is deemed necessary.


Assuntos
Antioxidantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/uso terapêutico
4.
J Cell Mol Med ; 21(2): 349-363, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27641937

RESUMO

This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN-BMMSCs, the bioactive content of ZDF-BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5-fold; P < 0.01) formation of tubule-like structures and migration of these cells (3-fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF-1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Proteoma/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Proteômica , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo
5.
Nutr Rev ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728008

RESUMO

Cardiovascular-related complications (CVCs) are the primary cause of death in patients undergoing hemodialysis (HD), accounting for greater than half of all deaths. Beyond traditional risk factors, chronic inflammation, extreme oxidative stress (OS), and endothelial dysfunction emerge as major contributors to accelerated CVCs in HD patients. Ample evidence shows that HD patients are constantly exposed to excessive OS, due to uremic toxins and pro-oxidant molecules that overwhelm the defense antioxidant mechanisms. The present study highlights the efficiency of natural antioxidant supplementation in managing HD-induced inflammation, OS, and consequently CVCs. Moreover, it discusses the underlying molecular mechanisms by which these antioxidants can decrease mitochondrial and endothelial dysfunction and ameliorate CVCs in HD patients. Given the complex nature of OS and its molecular pathways, the utilization of specific antioxidants as a polypharmacotherapy may be necessary for targeting each dysregulated signaling pathway and reducing the burden of CVCs.

6.
Arthroscopy ; 29(6): 1079-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23726110

RESUMO

PURPOSE: The purposes of this study were to assess tissue ingrowth within the Ligament Advanced Reinforcement System (LARS) artificial ligament (LARS AC; LARS, Arc sur Tille, France) and to study the biomechanical characteristics of the reconstructed knees in a sheep model of anterior cruciate ligament (ACL) replacement. METHODS: Twenty-five female sheep underwent excision of the proximal third of the left ACL and intra-articular joint stabilization with a 44-strand polyethylene terephthalate ligament (mean ultimate tensile failure load, 2,500 N). Animals were killed either 3 or 12 months after surgery. Explanted knees were processed for histology (n = 10) or mechanical tests including tests of laxity and loading to failure in tension (n = 15). RESULTS: Well-vascularized tissue ingrowth within the artificial ligament was only observed in the portions of the ligament in contact with the host's tissues (native ligament and bone tunnels). Ligament wear was observed in 40% of explanted knees. The ultimate tensile failure loads of the operated knees at both time points were inferior to those of the contralateral, intact knees (144 ± 69 N at 3 months and 260 ± 126 N at 12 months versus 1,241 ± 270 N and 1,218 ± 189 N, respectively) (P < .01). In specimens with intact artificial ligaments, failure occurred by slippage from the bone tunnels in all specimens explanted 3 months postoperatively and in half of the specimens explanted 12 months postoperatively. CONCLUSIONS: This study provides evidence that the LARS AC has a satisfactory biointegration but that it is not suitable for ACL replacement if uniform tissue ingrowth is contemplated. Despite good clinical performance up to 1 year after implantation, none of the reconstructions approached the mechanical performance of the normal ACL in the ovine model. Partial tearing of the artificial ligament, which led to a significant decrease in ultimate tensile strength, was observed in 40% of cases in the ovine model. CLINICAL RELEVANCE: The LARS is not a suitable scaffold for ACL replacement. Further animal studies are needed to evaluate its potential for augmentation of ligament repair.


Assuntos
Ligamento Cruzado Anterior/cirurgia , Órgãos Artificiais , Instabilidade Articular/cirurgia , Falha de Prótese/etiologia , Alicerces Teciduais , Animais , Ligamento Cruzado Anterior/irrigação sanguínea , Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Feminino , França , Instabilidade Articular/etiologia , Ruptura/cirurgia , Carneiro Doméstico , Resistência à Tração
7.
J Biomech Eng ; 134(2): 021007, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22482674

RESUMO

The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity of 200 µm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young's modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, "Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant," J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.


Assuntos
Testes de Dureza/métodos , Nanotecnologia/métodos , Osteogênese , Próteses e Implantes , Tíbia/citologia , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Calcificação Fisiológica , Feminino , Coelhos , Fatores de Tempo , Titânio
8.
Chem Biol Interact ; 360: 109937, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430258

RESUMO

Transplantation of mesenchymal stem cells (MSCs) is an effective treatment in tissue injuries though it is limited due to the early death of stem cells within the first few days. The main reason could be a deficiency in the respiratory chain of injured tissues which is linked to the oxidative stress (OS) and disruption of energy metabolism. The disruption in energy metabolism and OS both inhibit the homing of stem cells in the hypoxic micro-environment, however on other hand, the key functions of stem cells are mainly regulated by their cellular redox status and energy metabolism. Because of that, strategies are being developed to improve the bio-functional properties of MSCs, including preconditioning of the stem cells in hypoxic conditions and pretreatment of antioxidants. To achieve this purpose, in this study N-acetylcysteine (NAC) was used for the protection of cells from oxidative stress and the disruption in energy metabolism was induced by Antimycin A (AMA) via blocking the cytochrome C complex. Then several parameters were analyzed, including cell viability/apoptosis, mitochondrial membrane potential, and redox molecular homeostasis. Based on our findings, upon the exposure of the MSCs to the conditions of deficient respiratory chain, the cells failed to scavenge the free radicals, and energy metabolism was disrupted. The use of NAC was found to alleviate the DNA damage, cell apoptosis, and oxidative stress via Nrf2/Sirt3 pathway though without any effect on the mitochondrial membrane potential. It means that antioxidants protect the cells from OS but the problem of ATP metabolism yet remains unresolved in the hypoxic conditions.


Assuntos
Células-Tronco Mesenquimais , Doenças Mitocondriais , Acetilcisteína/farmacologia , Antimicina A/metabolismo , Antimicina A/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Humanos , Doenças Mitocondriais/metabolismo , Estresse Oxidativo
9.
J Biomech Eng ; 133(2): 021006, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280878

RESUMO

The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti-6Al-4V implants were placed in vivo at a distance of 200 µm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200 µm×4.4 mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190 µm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10 µm diameter. The ROIs were located in newly formed bone tissue (within the 200 µm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10(-3) m/s in newly formed bone tissue and 5.31×10(-3) m/s in mature bone. Analysis of variance (p=2.42×10(-4)) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with mature bone might be explained by the higher mineral content in mature bone, which was confirmed by histology. The heterogeneity of biomechanical properties of newly formed bone at the micrometer scale may explain the higher standard deviation of velocity measurements in newly formed bone compared with mature bone. The results demonstrate the feasibility of micro-Brillouin scattering technique to investigate the elastic properties of newly formed bone tissue.


Assuntos
Luz , Osteogênese , Próteses e Implantes , Espalhamento de Radiação , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Feminino , Coelhos , Propriedades de Superfície , Tíbia/citologia , Titânio
10.
J Acoust Soc Am ; 129(6): 4062-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21682427

RESUMO

Osseointegration of dental implants remains poorly understood. The objective of this numerical study is to understand the propagation phenomena of ultrasonic waves in prototypes cylindrically shaped implants and to investigate the sensitivity of their ultrasonic response to the surrounding bone biomechanical properties. The 10 MHz ultrasonic response of the implant was calculated using a finite difference numerical simulation tool and was compared to rf signals taken from a recent experimental study by Mathieu et al. [Ultrasound Med. Biol. 37, 262-270 (2011a)]. Reflection and mode conversion phenomena were analyzed to understand the origin of the different echoes and the importance of lateral wave propagation was evidenced. The sensitivity of the ultrasonic response of the implant to changes of (i) amount of bone in contact with the implant, (ii) cortical bone thickness, and (iii) surrounding bone material properties, was compared to the reproducibility of the measurements. The results show that, either a change of 1 mm of bone in contact with the implant, or 1.1 mm of cortical thickness or 12% of trabecular bone mass density should be detectable. This study paves the way for the investigation of the use of quantitative ultrasound techniques for the evaluation of bone-implant interface properties and implant stability.


Assuntos
Simulação por Computador , Implantação Dentária , Implantes Dentários , Fêmur/diagnóstico por imagem , Modelos Teóricos , Análise Numérica Assistida por Computador , Ultrassom/métodos , Ligas , Animais , Fenômenos Biomecânicos , Fêmur/cirurgia , Análise de Elementos Finitos , Teste de Materiais , Osseointegração , Desenho de Prótese , Coelhos , Processamento de Sinais Assistido por Computador , Titânio , Ultrassonografia
11.
Mater Sci Eng C Mater Biol Appl ; 127: 112207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225859

RESUMO

Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p < 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p < 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.


Assuntos
Matriz Óssea , Crânio , Animais , Regeneração Óssea , Transplante Ósseo , Osteogênese , Ratos
12.
J Clin Med ; 10(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063235

RESUMO

Reports on the association of periodontal disease (PD) with systemic lupus erythematosus (SLE) have regularly been published. PD is a set of chronic inflammatory conditions linked to a dysbiotic microbial biofilm, which affects the periodontal tissues, resulting eventually in their destruction and contributing to systemic inflammation. SLE is a multi-system chronic inflammatory autoimmune disease that has a wide range of clinical presentations, touching multiple organ systems. Many epidemiological studies have investigated the two-way relationship between PD and SLE, though their results are heterogeneous. SLE and PD are multifactorial conditions and many biological-based hypotheses suggest common physiopathological pathways between the two diseases, including genetics, microbiology, immunity, and environmental common risk factors. By focusing on recent clinical and translational research, this review aimed to discuss and give an overview of the relationship of SLE with PD, as well as looking at the similarities in the immune-pathological aspects and the possible mechanisms connecting the development and progression of both diseases.

13.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572905

RESUMO

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células-Tronco Mesenquimais/patologia , Animais , Diferenciação Celular , Proliferação de Células , Leucócitos Mononucleares/patologia , Masculino , Camundongos Nus , Neovascularização Fisiológica , Osteogênese , Ratos Zucker , Magreza/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32824705

RESUMO

Gingival bleeding (GB) is a common sign of gingival inflammation, which indicates the presence of periodontal diseases. This study aimed to describe the perception of French adults about their self-reported GB and answers of healthcare professionals regarding the GB reported by these interviewees. A questionnaire administered by one investigator in each of three public settings of four cities in France from September 2016 to November 2017. Among 794 adults interviewed, 502 (63.2%) reported a GB. Among them, 414 (82.5%) believed that GB is benign, and 309 (61.6%) declared one or more responses. The three main responses were to use mouthwash (29.3%), to change to a soft-bristle toothbrush (20.1%) and to modify the brushing technique (19.3%). Almost half (49.0%) questioned at least one healthcare professional concerning their GB: a dentist (43.0%), a physician (14.1%), and a pharmacist (8.0%). The main response of each healthcare professional was: for dentists: a "prescription of mouthwash", for physicians to say "gingival bleeding is not serious"; and for pharmacists: "to sell a mouthwash". Most of the participants considered their GB as benign and had inappropriate responses, which indicates their lack of knowledge regarding periodontal health. The same conclusions can be drawn for healthcare professionals, as reported by interviewees.


Assuntos
Hemorragia Gengival/psicologia , Adulto , Feminino , França/epidemiologia , Hemorragia Gengival/epidemiologia , Gengivite , Humanos , Masculino , Antissépticos Bucais , Escovação Dentária
17.
Artigo em Inglês | MEDLINE | ID: mdl-33218143

RESUMO

Gingival bleeding (GB) is a common sign of gingival inflammation which indicates the presence of periodontal diseases. This cross-sectional multicenter survey aimed to assess the prevalence of self-reported gingival bleeding (SRGB) in French adults and identify the main associated factors. A questionnaire-based interview was randomly proposed to 794 individuals in four French cities (Nancy, Montpellier, Paris, and Rennes). Subjects were recruited in preventive medicine centers (50%), railway stations, and malls (50%). The questionnaire comprised 25 items: SRGB characteristics, socioeconomic variables, oral hygiene habits, use of drugs, and anxiety level. The overall prevalence of SRGB was 63.2% [59.8%; 66.6%], with 58.7% bleeding after toothbrushing and 4.5% spontaneous bleeding. Males reported significantly lower SRGB prevalence than females (p = 0.04). The distribution of SRGB frequency was inversely proportional to age (p < 0.0001). No association between drug use and SRGB was found. The people interviewed in the preventive medicine centers reported the highest frequency of SRGB (p < 0.0001). In the multivariate logistic model, SRGB was significantly related to occupation, smoking status, brushing frequency, and anxiety level. In conclusion, SRGB was prevalent in more than half of the sample and was mainly associated with age, toothbrushing frequency, and anxiety level. Thus, providing information to patients about the importance of this oral manifestation may play an important role in preventing periodontal diseases.


Assuntos
Gengivite , Índice Periodontal , Escovação Dentária , Adulto , Estudos Transversais , Feminino , França/epidemiologia , Gengivite/epidemiologia , Humanos , Masculino , Modelos Estatísticos , Prevalência , Fatores de Risco , Autorrelato , Inquéritos e Questionários
18.
Eur Radiol Exp ; 3(1): 17, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30972589

RESUMO

BACKGROUND: To better understand bone fragility in type 2 diabetes mellitus and define the contribution of microcomputed tomography (micro-CT) to the evaluation of bone microarchitecture and vascularisation, we conducted an in vitro preliminary study on the femur of Zucker diabetic fatty (ZDF) rats and Zucker lean (ZL) rats. We first analysed bone microarchitecture, then determined whether micro-CT allowed to explore bone vascularisation, and finally looked for a link between these parameters. METHODS: Eight ZDF and six ZL rats were examined for bone microarchitecture (group 1), and six ZDF and six ZL rats were studied for bone vascularisation after Microfil® perfusion which is a radiopaque casting agent (group 2). In group 1, we used micro-CT to examine the trabecular and cortical bone microarchitecture of the femoral head, neck, shaft, and distal metaphysis. In group 2, micro-CT was used to study the blood vessels in the head, neck, and distal metaphysis. RESULTS: Compared to ZL rats, the ZDF rats exhibited significantly lower trabecular bone volume and number and higher trabecular separation in the three locations (p = 0.02, p = 0.02, p = 0.003). Cortical porosity was significantly higher in the ZDF rats at the neck and shaft (p = 0.001 and p = 0.005). We observed a dramatically poorer bone vascularisation in the femur of ZDF rats, especially in distal metaphysis (p < 0.047). CONCLUSIONS: Micro-CT demonstrated not only significant alterations in the bone microarchitecture of the femurs of ZDF rats, but also significant alterations in bone vascularisation. Further studies are required to demonstrate the causal link between poor vascularisation and impaired bone architecture.


Assuntos
Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Microtomografia por Raio-X , Animais , Osso Esponjoso/irrigação sanguínea , Osso Cortical/irrigação sanguínea , Estudos de Viabilidade , Fêmur/irrigação sanguínea , Ratos , Ratos Zucker
19.
Bone ; 112: 161-172, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29702250

RESUMO

OBJECTIVES: The present study was motivated by the fact that bone regeneration in the compromised vascular microenvironment of T2DM is challenging and the factors that determine the adverse bone regeneration outcomes are poorly understood. For this purpose the effect of T2DM on osteogenic and angiogenic healing potential of calvarial bone, was evaluated in Zucker diabetic fatty (ZDF) rats, an established rat model for obese T2DM. MATERIALS AND METHODS: The study used 16-week-old ZDF rats and their age-matched controls, Zucker Lean (ZL). Circular defects of different sizes were created on the animal calvaria, either a single 8-mm-diameter (n = 6) defect, or 6-4-2-mm-diameter multidefects (n = 6). Bone regeneration was evaluated at 0, 4, 6 and 8 weeks post surgery using in vivo micro-CT and after animal sacrifice using ex vivo micro-CT. Vascular network parameters within the defects, were quantified by perfusing the animal vasculature with microfil® and scanning it after decalcification. RESULTS: Compared to results obtained from the ZL rats, defects of 8-mm-diameter in ZDF rats displayed impaired healing kinetics and significantly reduced newly formed bone volume (p < 0.01) and surface area (p < 0.01), 8 weeks post surgery. Defects of 6-4-2-mm-diameter exhibited bone formation, which was independent of either the size or the diabetic condition. Compared to results from the ZL, in the ZDF rats, vasculature volume and surface area were significantly (p < 0.05) reduced in all size-defects. CONCLUSION: The present study provided evidence that T2DM impairs bone formation in critical-size calvarial defects and markedly reduces angiogenesis in all defects regardless of the defect size tested.


Assuntos
Regeneração Óssea/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Crânio/fisiopatologia , Animais , Masculino , Ratos , Ratos Zucker , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA