Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30258002

RESUMO

The NS1 protein of influenza A virus is a multifunctional virulence factor that inhibits cellular processes to facilitate viral gene expression. While NS1 is known to interact with RNA and proteins to execute these functions, the cellular RNAs that physically interact with NS1 have not been systematically identified. Here we reveal a NS1 protein-RNA interactome and show that NS1 primarily binds intronic sequences. Among this subset of pre-mRNAs is the RIG-I pre-mRNA, which encodes the main cytoplasmic antiviral sensor of influenza virus infection. This suggested that NS1 interferes with the antiviral response at a posttranscriptional level by virtue of its RNA binding properties. Indeed, we show that NS1 is necessary in the context of viral infection and sufficient upon transfection to decrease the rate of RIG-I intron removal. This NS1 function requires a functional RNA binding domain and is independent of the NS1 interaction with the cleavage and polyadenylation specificity factor CPSF30. NS1 has been previously shown to abrogate RIG-I-mediated antiviral immunity by inhibiting its protein function. Our data further suggest that NS1 also posttranscriptionally alters RIG-I pre-mRNA processing by binding to the RIG-I pre-mRNA.IMPORTANCE A key virulence factor of influenza A virus is the NS1 protein, which inhibits various cellular processes to facilitate viral gene expression. The NS1 protein is localized in the nucleus and in the cytoplasm during infection. In the nucleus, NS1 has functions related to inhibition of gene expression that involve protein-protein and protein-RNA interactions. While several studies have elucidated the protein interactome of NS1, we still lack a clear and systematic understanding of the NS1-RNA interactome. Here we reveal a nuclear NS1-RNA interactome and show that NS1 primarily binds intronic sequences within a subset of pre-mRNAs, including the RIG-I pre-mRNA that encodes the main cytoplasmic antiviral sensor of influenza virus infection. Our data here further suggest that NS1 is necessary and sufficient to impair intron processing of the RIG-I pre-mRNA. These findings support a posttranscriptional role for NS1 in the inhibition of RIG-I expression.


Assuntos
Proteína DEAD-box 58/genética , Vírus da Influenza A/metabolismo , Precursores de RNA/metabolismo , Proteínas não Estruturais Virais/fisiologia , Células A549 , Sítios de Ligação , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Vírus da Influenza A/química , Íntrons , Ligação Proteica , Processamento Pós-Transcricional do RNA , Receptores Imunológicos , Análise de Sequência de RNA
2.
Nucleic Acids Res ; 45(7): 4189-4201, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28053121

RESUMO

Adenosine deaminases acting on RNA (ADARs) catalyze the editing of adenosine residues to inosine (A-to-I) within RNA sequences, mostly in the introns and UTRs (un-translated regions). The significance of editing within non-coding regions of RNA is poorly understood. Here, we demonstrate that association of ADAR2 with RNA stabilizes a subset of transcripts. ADAR2 interacts with and edits the 3΄UTR of nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). In absence of ADAR2, the abundance and half-life of Ctn RNA are significantly reduced. Furthermore, ADAR2-mediated stabilization of Ctn RNA occurred in an editing-independent manner. Unedited Ctn RNA shows enhanced interaction with the RNA-binding proteins HuR and PARN [Poly(A) specific ribonuclease deadenylase]. HuR and PARN destabilize Ctn RNA in absence of ADAR2, indicating that ADAR2 stabilizes Ctn RNA by antagonizing its degradation by PARN and HuR. Transcriptomic analysis identified other RNAs that are regulated by a similar mechanism. In summary, we identify a regulatory mechanism whereby ADAR2 enhances target RNA stability by limiting the interaction of RNA-destabilizing proteins with their cognate substrates.


Assuntos
Adenosina Desaminase/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Exorribonucleases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Transportador 2 de Aminoácidos Catiônicos/genética , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Camundongos , Edição de RNA , RNA Longo não Codificante/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(27): 8338-43, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100909

RESUMO

Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1-interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing.


Assuntos
Proteínas Cromossômicas não Histona/genética , DNA Ribossômico/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Ubiquitina Tiolesterase/genética , Western Blotting , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sumoilação , Ubiquitina Tiolesterase/metabolismo
4.
Annu Rev Chem Biomol Eng ; 14: 265-281, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289561

RESUMO

Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.


Assuntos
Bactérias , Estresse Oxidativo , Oxirredução , Bactérias/genética , Bactérias/metabolismo , Fatores de Transcrição/metabolismo , RNA/metabolismo
5.
Antimicrob Agents Chemother ; 54(5): 1693-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20176897

RESUMO

By choosing membranes as targets of action, antibacterial peptides offer the promise of providing antibiotics to which bacteria would not become resistant. However, there is a need to increase their potency against bacteria along with achieving a reduction in toxicity to host cells. Here, we report that three de novo-designed antibacterial peptides (DeltaFm, DeltaFmscr, and Ud) with poor to moderate antibacterial potencies and kill kinetics improved significantly in all of these aspects when synergized with rifampin and kanamycin against Escherichia coli. (DeltaFm and DeltaFmscr [a scrambled-sequence version of DeltaFm] are isomeric, monomeric decapeptides containing the nonproteinogenic amino acid alpha,beta-didehydrophenylalanine [DeltaF] in their sequences. Ud is a lysine-branched dimeric peptide containing the helicogenic amino acid alpha-aminoisobutyric acid [Aib].) In synergy with rifampin, the MIC of DeltaFmscr showed a 34-fold decrease (67.9 microg/ml alone, compared to 2 microg/ml in combination). A 20-fold improvement in the minimum bactericidal concentration of Ud was observed when the peptide was used in combination with rifampin (369.9 microg/ml alone, compared to 18.5 microg/ml in combination). Synergy with kanamycin resulted in an enhancement in kill kinetics for DeltaFmscr (no killing until 60 min for DeltaFmscr alone, versus 50% and 90% killing within 20 min and 60 min, respectively, in combination with kanamycin). Combination of the dendrimeric peptide DeltaFq (a K-K2 dendrimer for which the sequence of DeltaFm constitutes each of the four branches) (MIC, 21.3 microg/ml) with kanamycin (MIC, 2.1 microg/ml) not only lowered the MIC of each by 4-fold but also improved the therapeutic potential of this highly hemolytic (37% hemolysis alone, compared to 4% hemolysis in combination) and cytotoxic (70% toxicity at 10x MIC alone, versus 30% toxicity in combination) peptide. Thus, synergy between peptide and nonpeptide antibiotics has the potential to enhance the potency and target selectivity of antibacterial peptides, providing regimens which are more potent, faster acting, and safer for clinical use.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Canamicina/farmacologia , Rifampina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desenho de Fármacos , Sinergismo Farmacológico , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/citologia , Células HeLa , Humanos , Canamicina/química , Canamicina/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/toxicidade , Rifampina/química , Rifampina/toxicidade
6.
Biochemistry ; 48(24): 5642-57, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19432402

RESUMO

Toward delineation of antimicrobial action, a prototypic amphipathic, cationic decapeptide Ac-G-X-R-K-X-H-K-X-W-A-NH(2) was designed and peptides for which X was didehydrophenylalanine (DeltaFm), alpha-aminoisobutyric acid (Um), or phenylalanine (Fm) were synthesized. A growth kinetics experiment indicated that the bacteriostatic effects were nil (Um), mild and transient (Fm), and strong and persistent (DeltaFm) respectively. Though at par in binding to lipopolysaccharide, DeltaFm and Fm, but not Um, caused outer membrane permeabilization. Inner membrane permeabilization was attenuated and membrane architecture rehabilitated with DeltaFm but not Fm. Reverse phase high-performance liquid chromatography revealed that DeltaFm was translocated into Escherichia coli, while Um and fragments of Fm were detected in the medium. Among these monomers, only DeltaFm was modestly antibiotic [minimum inhibitory concentrations (MICs) of 110 microM (E. coli) and 450 microM (Staphylococcus aureus)]. Interestingly, a linear dimer of DeltaFm, viz. (DeltaFm)(2), turned out to be highly potent against E. coli [MIC of 2 microM and minimum bactericidal concentration (MBC) of 2 microM] and modestly potent against S. aureus (MIC of 20 microM and MBC of 20 microM). In contrast, a lysine-based branched dimer of DeltaFm, viz. DeltaFd, was found to be a potent antimicrobial against both E. coli (MIC of 2.5 microM) and S. aureus (MIC of 5 microM). Studies with analogous branched dimers of Fm and Um have indicated that dimerization represents a scaffold for potentiation of antimicrobial peptides and that the presence of DeltaF confers potent activity against both E. coli and S. aureus. De novo design has identified DeltaFd as a potent, noncytotoxic, bacterial cell-permeabilizing and -penetrating antimicrobial peptide, more protease resistant than its monomeric counterpart. We report that in comparison to the subdued and sequential "membrane followed by cell interior" mode of action of the monomeric DeltaFm, the strong and simultaneous "membrane along with cell interior" targeting by the dimeric DeltaFd potentiates and broadens its antibiotic action across the Gram-negative-Gram-positive divide.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Permeabilidade da Membrana Celular , Citosol , Dimerização , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Células HeLa , Humanos , Cinética , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Oligopeptídeos/metabolismo , Relação Estrutura-Atividade
7.
FEBS Lett ; 591(18): 2890-2904, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28833069

RESUMO

Adenosine deaminases acting on RNA (ADARs) are proteins that catalyse widespread A-to-I editing within RNA sequences. We recently reported that ADAR2 edits and stabilizes nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). Here, we report that ADAR1 coordinates with ADAR2 to regulate editing and stability of Ctn RNA. We observe an RNA-dependent interaction between ADAR1 and ADAR2. Furthermore, ADAR1 negatively regulates interaction of Ctn RNA with RNA-destabilizing proteins. We also show that breast cancer (BC) cells display elevated ADAR1 but not ADAR2 levels, compared to nontumourigenic cells. Additionally, BC patients with elevated levels of ADAR1 show low survival. Our findings provide insights into overlapping substrate preferences of ADARs and potential involvement of ADAR1 in BC.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA/genética , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas/genética , Adenosina Desaminase/genética , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
8.
Sci Rep ; 6: 34043, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27665741

RESUMO

Paraspeckles are sub-nuclear domains that are nucleated by long noncoding RNA Neat1. While interaction of protein components of paraspeckles and Neat1 is understood, there is limited information on the interaction of non-structural RNA components with paraspeckles. Here, by varying paraspeckle number and size, we investigate how paraspeckles influence the nuclear organization of their non-structural RNA component Ctn RNA. Our results show that Ctn RNA remains nuclear-retained in the absence of intact paraspeckles, suggesting that they do not regulate nuclear retention of Ctn RNA. In the absence of Neat1, Ctn RNA continues to interact with paraspeckle protein NonO to form residual nuclear foci. In addition, in the absence of Neat1-nucleated paraspeckles, a subset of Ctn RNA localizes to the perinucleolar regions. Concomitant with increase in number of paraspeckles, transcriptional reactivation resulted in increased number of paraspeckle-localized Ctn RNA foci. Similar to Neat1, proteasome inhibition altered the localization of Ctn RNA, where it formed enlarged paraspeckle-like foci. Super-resolution structured illumination microscopic analyses revealed that in paraspeckles, Ctn RNA partially co-localized with Neat1, and displayed a more heterogeneous intra-paraspeckle localization. Collectively, these results show that while paraspeckles do not influence nuclear retention of Ctn RNA, they modulate its intranuclear compartmentalization.

9.
J Med Chem ; 53(16): 6079-88, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20681539

RESUMO

Antimicrobial peptides hold promise against antibiotic resistant pathogens. Here, to find the physicochemical origins of potency and broad spectrum antimicrobial action, we report the structure-activity relationships of synthetic intermediates (peptides A-D) of a potent lysine branched dimeric antibacterial peptide DeltaFd. Our studies show that a tetracationic character in a weak helical fold (peptide C) elicits potent but narrow spectrum antimicrobial activity [Minimum inhibitory concentrations (MICs) E. coli 10 microM, S. aureus>100 microM]. In contrast, a hexacationic character in a strong, amphipathic helix (DeltaFd) confers potent and broad spectrum action [MICs E. coli 2.5 microM, S. aureus 5 microM]. While DeltaFd caused rapid and potent permeabilization of the E. coli membranes, the less helical intermediates (peptides A-D) showed slow and weak to no responses. Two seminal findings that may aid future drug design are (a) at identical helicity, increasing charge enhanced outer membrane permeabilization, and (b) at identical charge, increasing helicity stimulated rate of outer membrane permeabilization and kill kinetics besides enhancing potency leading to broad spectrum action.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Permeabilidade da Membrana Celular , Dicroísmo Circular , Dimerização , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA