Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(14): 144306, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37061465

RESUMO

The instability of a cryogenic 4He jet exiting through a small nozzle into vacuum leads to the formation of 4He drops, which are considered ideal matrices for spectroscopic studies of embedded atoms and molecules. Here, we present a He-density functional theory (DFT) description of droplet formation resulting from jet breaking and contraction of superfluid 4He filaments. Whereas the fragmentation of long jets closely follows the predictions of linear theory for inviscid fluids, leading to droplet trains interspersed with smaller satellite droplets, the contraction of filaments with an aspect ratio larger than a threshold value leads to the nucleation of vortex rings, which hinder their breakup into droplets.

2.
J Chem Phys ; 159(7)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602801

RESUMO

We address the collision of two superfluid 4He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4He time-dependent density functional theory at zero temperature. Despite the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with a non-zero impact parameter produce linear vortices that are nucleated at indentations appearing on the surface of the deformed merged droplet. Whereas for equal-size droplets, vortices are produced in pairs, an odd number of vortices can appear when the colliding droplet sizes are different. In all cases, vortices coexist with surface capillary waves. The possibility for collisions to be at the origin of vortex nucleation in experiments involving very large droplets is discussed. An additional surprising result is the observation of the drops coalescence even for grazing and distal collisions at relative velocities as high as 80 and 40 m/s, respectively, induced by the long-range van der Waals attraction between the droplets.

3.
Phys Rev Lett ; 124(21): 215301, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530661

RESUMO

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

4.
J Chem Phys ; 152(18): 184111, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414245

RESUMO

Motivated by recent experiments, we study normal-phase rotating 3He droplets within density functional theory in a semi-classical approach. The sequence of rotating droplet shapes as a function of angular momentum is found to agree with that of rotating classical droplets, evolving from axisymmetric oblate to triaxial prolate to two-lobed shapes as the angular momentum of the droplet increases. Our results, which are obtained for droplets of nanoscopic size, are rescaled to the mesoscopic size characterizing ongoing experimental measurements, allowing for a direct comparison of shapes. The stability curve in the angular velocity-angular momentum plane shows small deviations from the classical rotating drop model predictions, whose magnitude increases with angular momentum. We attribute these deviations to effects not included in the simplified classical model description of a rotating fluid held together by surface tension, i.e., to surface diffuseness, curvature, and finite compressibility, and to quantum effects associated with deformation of the 3He Fermi surface. The influence of all these effects is expected to diminish as the droplet size increases, making the classical rotating droplet model a quite accurate representation of 3He rotation.

5.
Phys Chem Chem Phys ; 21(31): 17423-17432, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31359015

RESUMO

The capture of multiple impurities by 4He droplets is investigated using real time dynamics within the density functional approach applied to liquid helium. We study the case of two or six Ar atoms colliding with a 4He5000 droplet either in its ground state or hosting a six-vortex array. Depending on initial kinematic conditions, two different Ar structures are found: either a compact, gas-phase like cluster, or a loosely bound metastable cluster with helium density caged inside. In the presence of the vortex array, the argon atoms are deflected by the superfluid flow, tending to orbit around the vortex cores. The Ar atoms end up being trapped together in a loosely bound structure attached to the central vortex core.

6.
Phys Rev Lett ; 120(3): 035302, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400543

RESUMO

The existence of bright solitons in bulk superfluid ^{4}He is demonstrated by time-resolved shadowgraph imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence between soliton amplitude and the propagation velocity. The experimental observations are supported by DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At high amplitudes, solitons become unstable and break down into dispersive shock waves.

7.
8.
Phys Chem Chem Phys ; 19(36): 24805-24818, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28868543

RESUMO

We present a computational study, based on time-dependent Density Functional theory, of the real-time interaction and trapping of Ar and Xe atoms in superfluid 4He nanodroplets either pure or hosting quantized vortex lines. We investigate the phase-space trajectories of the impurities for different initial conditions and describe in detail the complex dynamics of the droplets during the capture of the impurities. We show that the interaction of the incoming atom with the vortex core induces large bending and twisting excitations of the vortex core lines, including the generation of helical Kelvin waves propagating along the vortex core. We have also calculated the stationary configurations of a 4He droplet hosting a 6-vortex array whose cores are filled with Ar atoms. As observed in recent experiments, we find that doping adds substantial rigidity to the system, such that the doped vortex array remains stable, even at low values of the angular velocities where the undoped vortices would otherwise be pushed towards the droplet surface and be expelled.

9.
J Phys Chem A ; 115(25): 6789-96, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21434657

RESUMO

A method is proposed for the calculation of potential energy curves and related electronic excitation spectra of dopant atoms captured in/on He nanodroplets and is applied to alkali metal atoms. The method requires knowledge of the droplet density distribution at equilibrium (here calculated within a bosonic-He density functional approach) and of a set of valence electron orbitals of the bare dopant atom (here calculated by numeric solution of the Schrödinger equation in a suitably parametrized model potential). The electron-helium interaction is added as a perturbation, and potential energy curves are obtained by numeric diagonalization of the resulting Hamiltonian as a function of an effective coordinate z(A) (here the distance between the dopant atom and center of mass of the droplet, resulting in a pseudodiatomic potential). Excitation spectra are calculated for Na in the companion paper as the Franck-Condon factors between the v = 0 vibrational state in the ground electronic state and excited states of the pseudodiatomic molecule. They agree well with available experimental data, even for highly excited states where a more traditional approach fails.

10.
J Phys Chem A ; 115(25): 6779-88, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21446657

RESUMO

One- and two-photon excitation spectra of sodium atoms on the surface of helium droplets are reported. The spectra are recorded by monitoring the photoionization yield of desorbed atoms as function of excitation frequency. The excitation spectra involving states with principal quantum number up to n = 6 can be reproduced by a pseudodiatomic model where the helium droplet is treated as a single atom. For the lowest excited states of sodium, the effective interaction potentials for this system can be approximated by the sum of NaHe pair potentials. For the higher excited states, the interaction of the sodium valence electron with the helium induces significant configuration mixing, leading to a failure of this approach. For these states, effective interaction potentials based on a perturbative treatment of the interactions between the valence electron, the alkali positive core, and the helium, as described in detail in the accompanying publication, yield excellent agreement with experiment.

11.
J Chem Phys ; 133(16): 164502, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21033800

RESUMO

Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n+1)p←ns transition of K, Rb, and Cs (n=4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

12.
J Chem Phys ; 130(7): 074702, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19239304

RESUMO

The method, recently developed to include van der Waals interactions in the density functional theory by using the maximally localized Wannier functions, is extended to the case of atoms and fragments weakly bonded (physisorbed) to metal and semimetal surfaces, thus opening the way to realistic simulations of surface-physics processes, where van der Waals interactions play a key role. Successful applications to the case of Ar on graphite and of Ar, He, and H(2) on the Al(100) surface are presented.

13.
J Phys Chem B ; 110(24): 12022-8, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800511

RESUMO

The properties of interfacial water on Cl- and H-terminated Si(111) surfaces are investigated using a first-principles approach and characterized by means of energetic analysis combined with hydrogen-bond counting. The interaction of water with both substrates is found to be significantly weak, although bonding with the Cl-terminated Si(111) surface is relatively stronger because of the electrostatic contribution. According to a molecular picture for attributing the hydrophilic/hydrophobic character, both surfaces should be considered hydrophobic, at variance with the interpretation of recent ultrafast electron crystallography experiments, which seems instead to support a hydrophilic nature of the Cl-terminated Si(111) substrate.

14.
J Phys Chem B ; 110(30): 14832-41, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869593

RESUMO

The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.

15.
J Phys Chem B ; 109(2): 819-24, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16866447

RESUMO

The chemisorption of C8H8 bicyclo[2.2.2]-2,5,7-octatriene (barrelene) on the Si(100) surface is studied from first principles calculations. We find that, in the most stable configuration, barrelene is bonded to Si(100) through four Si-C bonds, with the C-C bonds which are orthogonal to the underlying Si dimers. The chemisorption reaction responsible for this structure is driven by the biradical nature of the Si-Si dimer bond. Two others, slightly less stable configurations, exist which are also characterized by four Si-C bonds but have a different orientation or location with respect to the Si(100) surface. The properties of these and other, less stable configurations have been investigated. For the most stable structures, the effect of different surface coverages has been also studied, showing a tendency to easily form complete monolayers of barrelene on the Si surface. On the basis of energetic and kinetic considerations, we expect that chemisorption of barrelene monolayers on the Si(100) surface will be characterized however by a certain amount of disorder. Finally, several possible reaction pathways, leading from one stable structure to another of lower energy or from a molecule in the gas phase to a chemisorbed configuration, have been investigated in detail and estimates of the relative energy barriers are given.

16.
J Chem Theory Comput ; 8(4): 1288-94, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26596745

RESUMO

We investigate the interaction of the H2 molecule with a graphene layer and with a small-radius carbon nanotube using ab initio density functional methods. H2 can interact with carbon materials like graphene, graphite, and nanotubes either through physisorption or chemisorption. The physisorption mechanism involves the binding of the hydrogen molecule on the material as a result of weak van der Waals forces, while the chemisorption mechanism involves the dissociation of the hydrogen molecule and the ensuing reaction of both hydrogen atoms with the unsatured C-C bonds to form C-H bonds. In our calculations, we take into account van der Waals interactions using a recently developed method based on the concept of maximally localized Wannier functions. We explore several adsorption sites and orientations of the hydrogen molecule relative to the carbon surface and compute the associated binding energies and adsorption potentials. The most stable physisorbed state on graphene is found to be the hollow site in the center of a carbon hexagon, with a binding energy of -48 meV, in good agreement with experimental results. The analysis of diffusion pathways between different physisorbed states on graphene shows that molecular hydrogen can easily diffuse at room temperature from one configuration to another, which are separated by energy barriers as small as 10 meV. We also compute the potential energy surfaces for the dissociative chemisorption of H2 on highly symmetric sites of graphene, the lowest activation barrier found being 2.67 eV. Much weaker adsorption characterizes instead the physisorption interaction of the H2 molecule with the small radius (2,2) CNT. The barriers for H2 dissociation on the nanotube external surface are significantly lowered with respect to the graphene case, showing the remarkable effect of the substrate curvature in promoting hydrogen dissociation.

17.
J Chem Phys ; 126(12): 124317, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17411133

RESUMO

The local order around alkali (Li(+) and Na(+)) and alkaline-earth (Be(+), Mg(+), and Ca(+)) ions in (4)He clusters has been studied using ground-state path integral Monte Carlo calculations. The authors apply a criterion based on multipole dynamical correlations to discriminate between solidlike and liquidlike behaviors of the (4)He shells coating the ions. As it was earlier suggested by experimental measurements in bulk (4)He, their findings indicate that Be(+) produces a solidlike ("snowball") structure, similar to alkali ions and in contrast to the more liquidlike (4)He structure embedding heavier alkaline-earth ions.

18.
J Chem Phys ; 126(24): 244502, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17614559

RESUMO

Electron bubbles in superfluid (4)He have been recently observed in low-temperature cavitation measurements under experimental conditions where quantized vortices are also present in the liquid, and which might be attached to the bubbles. We have calculated, within density functional theory, the structure and energetics of electron bubbles pinned to linear vortices in liquid (4)He at low temperature, and the pressure at which such structures become mechanically unstable. Our results are in semiquantitative agreement with the experiments. We discuss dynamical effects not included in the theoretical model used in the present calculations, and which could explain some discrepancies between our results and the experimental data.

19.
J Phys Chem A ; 111(31): 7303-8, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17417828

RESUMO

We present systematic results, based on density functional calculations, for the structure and energetics of 3He and 4He nanodroplets doped with alkaline earth atoms. We predict that alkaline earth atoms from Mg to Ba go to the center of 3He drops, whereas Ca, Sr, and Ba reside in a deep dimple at the surface of 4He drops, and Mg is at their center. For Ca and Sr, the structure of the dimples is shown to be very sensitive to the He-alkaline earth pair potentials used in the calculations. The 5s5p <-- 5s2 transition of strontium atoms attached to helium nanodroplets of either isotope has been probed in absorption experiments. The spectra show that strontium is solvated inside 3He nanodroplets, supporting the calculations. In the light of our findings, we emphasize the relevance of the heavier alkaline earth atoms for analyzing mixed 3He-4He nanodroplets, and in particular, we suggest their use to experimentally probe the 3He-4He interface.

20.
Chemphyschem ; 6(9): 1889-93, 2005 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16080217

RESUMO

The interaction of water with alkanethiolate chains is studied from first principles. A detailed analysis is performed by optimizing the structure of small water clusters, one-dimensional water chains, and ordered and disordered thin water layers adsorbed on hydroxyl(OH)- and methyl(CH3)-terminated alkanethiol monolayers. The hydrophilic/hydrophobic character of these two different substrates is investigated by means of an energetic analysis combined with hydrogen-bond counting. On the hydrophilic OH-terminated alkanethiol surface, zigzag, one-dimensional water chains and disordered thin water layers are the energetically favored structures. The ab initio results can be used to determine the optimal value of the empirical parameters characterizing a suitable force field to be used in classic molecular dynamics simulations.


Assuntos
Alcanos/química , Modelos Químicos , Compostos de Sulfidrila/química , Adsorção , Simulação por Computador , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA