RESUMO
BACKGROUND: Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been found in the early phase of schizophrenia and may underlie cognitive deficits. However, the association between cognitive function and levels of glutamatergic metabolites and GABA has not been investigated in a large group of antipsychotic-naïve patients. METHODS: In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, and IQ were assessed. RESULTS: The whole group of antipsychotic-naïve patients had lower levels of GABA in dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ between groups. Glx levels in dorsal ACC were positively associated with working memory (logarithmically transformed: b = -.016 [higher score indicates worse performance], p = .005) and attention (b = .056, p = .035) in both patients and healthy control subjects, although the association with attention did not survive adjustment for multiple comparisons. CONCLUSIONS: The findings suggest a positive association between glutamatergic metabolites and cognitive function that do not differ between patients and healthy control subjects. Moreover, our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive deficits may gain from glutamate-modulating compounds.
Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Cognição , Ácido Glutâmico , Glutamina , Giro do Cíngulo , Humanos , Ácido gama-AminobutíricoRESUMO
It has been suggested that psychophysiological measures of sensory and sensorimotor gating, P50 gating and prepulse inhibition of the startle reflex (PPI), underlie core features of schizophrenia and are linked to dopaminergic pathways in the striatum and prefrontal cortex. In the present study, the effects of a potent D2/D3 receptor antagonist, amisulpride, were investigated on PPI and P50 gating in a large sample of antipsychotic-naive, first-episode patients with schizophrenia. A total of 52 initially antipsychotic-naive, first-episode schizophrenia patients were assessed for their P50 gating, PPI, and habituation/sensitization abilities at baseline and after 2 and 6 weeks of treatment with flexible doses of amisulpride. In addition, 47 matched healthy controls were assessed at baseline and after 6 weeks. At baseline, the patients showed significantly reduced PPI, yet normal levels of P50 gating, habituation, and sensitization. Treatment with amisulpride showed no effects on these measures, either at 2 or 6 weeks of follow-up. This is the first study investigating the effects of monotherapy with a relatively selective dopamine D2/D3 receptor antagonist (amisulpride) on sensory and sensorimotor gating deficits in a longitudinal study of a large group of initially antipsychotic-naive, first-episode patients with schizophrenia. Our finding that amisulpride effectively reduced symptom severity in our patients without reducing their PPI deficits indicates that increased activity of dopamine D2 receptors may be involved in symptomatology of patients with schizophrenia, but not in their sensorimotor gating deficits.