Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(25): e2205536119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35700360

RESUMO

Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin-glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.


Assuntos
Distrofina , Adesões Focais , Mecanotransdução Celular , Distrofia Muscular de Duchenne , Animais , Linhagem Celular , Distrofina/genética , Adesões Focais/genética , Mecanotransdução Celular/genética , Camundongos , Células Musculares , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
2.
ACS Synth Biol ; 13(6): 1669-1678, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38820192

RESUMO

HUH-tags have emerged as versatile fusion partners that mediate sequence specific protein-ssDNA bioconjugation through a simple and efficient reaction. Here we present HUHgle, a python-based interactive tool for the visualization, design, and optimization of substrates for HUH-tag mediated covalent labeling of proteins of interest with ssDNA substrates of interest. HUHgle streamlines design processes by integrating an intuitive plotting interface with a search function capable of predicting and displaying protein-ssDNA bioconjugate formation efficiency and specificity in proposed HUH-tag/ssDNA sequence combinations. Validation demonstrates that HUHgle accurately predicts product formation of HUH-tag mediated bioconjugation for single- and orthogonal-labeling reactions. In order to maximize the accessibility and utility of HUHgle, we have implemented it as a user-friendly Google Colab notebook which facilitates broad use of this tool, regardless of coding expertise.


Assuntos
DNA de Cadeia Simples , Software , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética
3.
Structure ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39305901

RESUMO

The dystrophin-glycoprotein-complex (DGC), anchored by the transmembrane protein dystroglycan, functions to mechanically link the extracellular matrix and actin cytoskeleton. Breaking this connection is associated with diseases such as muscular dystrophy, yet cleavage of dystroglycan by matrix-metalloproteinases (MMPs) remains an understudied mechanism to disrupt the DGC. We determined the crystal structure of the membrane-adjacent domain (amino acids 491-722) of E. coli expressed human dystroglycan to understand MMP cleavage regulation. The structural model includes tandem immunoglobulin-like (IGL) and sperm/enterokinase/agrin-like (SEAL) domains, which support proteolysis in diverse receptors to facilitate mechanotransduction, membrane protection, and viral entry. The structure reveals a C-terminal extension that buries the MMP site by packing into a hydrophobic pocket, a unique mechanism of MMP cleavage regulation. We further demonstrate structure-guided and disease-associated mutations disrupt proteolytic regulation using a cell-surface proteolysis assay. Thus disrupted proteolysis is a potentially relevant mechanism for "breaking" the DGC link to contribute to disease pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA