Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(6): 3971-3979, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30726059

RESUMO

There is a strong demand for bioanalytical techniques to rapidly detect protease activities with high sensitivity and high specificity. This study reports an activity-based electrochemical method toward this goal. Nanoelectrode arrays (NEAs) fabricated with embedded vertically aligned carbon nanofibers (VACNFs) are functionalized with specific peptide substrates containing a ferrocene (Fc) tag. The kinetic proteolysis curves are measured with continuously repeated ac voltammetry, from which the catalytic activity is derived as the inverse of the exponential decay time constant based on a heterogeneous Michaelis-Menten model. Comparison of three peptide substrates with different lengths reveals that the hexapeptide H2N-(CH2)4-CO-Pro-Leu-Arg-Phe-Gly-Ala-NH-CH2-Fc is the optimal probe for cathepsin B. The activity strongly depends on temperature and is the highest around the body temperature. With the optimized peptide substrate and measuring conditions, the limit of detection of cathepsin B activity and concentration can reach 2.49 × 10-4 s-1 and 0.32 nM, respectively. The peptide substrates show high specificity to the cognate proteases, with negligible cross-reactions among three cancer-related proteases cathepsin B, ADAM10, and ADAM17. This electrochemical method can be developed into multiplex chips for rapid profiling of protease activities in cancer diagnosis and treatment monitoring.


Assuntos
Proteína ADAM10/análise , Proteína ADAM17/análise , Secretases da Proteína Precursora do Amiloide/análise , Carbono/química , Catepsina B/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas de Membrana/análise , Nanofibras/química , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Catepsina B/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Nanotecnologia , Proteólise
2.
Anal Chem ; 89(20): 11027-11035, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28968078

RESUMO

Here, we report a new kind of microelectrochemical flow system that is well suited for studying electrode modifications, like thin films prepared by atomic layer deposition (ALD), that require substrates to have a two-dimensional form factor. The design provides a means for electrodes to be modified ex situ and then incorporated directly into the flow cell. The electrodes can be removed after testing and further modified or tested before being reincorporated into the flow cell. Using this cell, mass-transfer coefficients up to 0.011 cm/s and collection efficiencies up to 57 ± 10% have been achieved. Electrodes modified with an ultrathin layer of ALD Al2O3 and an overlayer of Pt dendrimer-encapsulated nanoparticles (DENs) have been incorporated into the flow cell and their electrocatalytic properties evaluated. Subsequently, the dendrimer was removed from the Pt DENs using a UV/O3 treatment, and this provided direct contact between the Al2O3 layer and the NPs. Finally, the product distribution for the oxygen reduction reaction (water vs H2O2) was evaluated in the presence and absence of Pt-Al2O3 support interactions.

3.
Langmuir ; 33(28): 7053-7061, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28665618

RESUMO

We report the use of microfluidic surface titrations (MSTs) for studying electroactive self-assembled monolayers (eSAMs) and other thin films. The technique of MST utilizes a microfluidic generation-collection dual channel electrode (DCE) configuration to quantify the charge associated with electroactive thin films that might or might not be in direct contact with an electrode surface. This technique allows for quantitative measurement of surface coverages, Γ, as low as 30 pmol cm-2 for electrodeposited Cu thin films. Additionally, we show that it is possible to quantify Γ for ferrocene (Fc)-terminated alkylthiols in mixed-monolayer eSAMs. Interestingly, MSTs sometimes reveal a two-fold higher eSAM concentration compared to direct electrochemical measurements. This finding suggests that in these instances not all the constituent Fc-moieties of the eSAM are in sufficiently close proximity to the surface to be addressable via direct electrochemistry.

4.
J Am Chem Soc ; 136(12): 4616-23, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24635569

RESUMO

In the present article we provide a detailed analysis of fundamental electrochemical processes in a new class of paper-based analytical devices (PADs) having hollow channels (HCs). Voltammetry and amperometry were applied under flow and no flow conditions yielding reproducible electrochemical signals that can be described by classical electrochemical theory as well as finite-element simulations. The results shown here provide new and quantitative insights into the flow within HC-PADs. The interesting new result is that despite their remarkable simplicity these HC-PADs exhibit electrochemical and hydrodynamic behavior similar to that of traditional microelectrochemical devices.

5.
Anal Chem ; 86(19): 9962-9, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25260095

RESUMO

Here we report on the development of a high-efficiency, dual channel-electrode (DCE) generation-collection system and its application for interrogating redox-active surface-adsorbed thin films. DCE systems consist of two electrodes configured on the base of a microfluidic channel. Under laminar flow conditions, a redox reaction can be driven on the upstream generator electrode, and the products carried by convection to the downstream collector electrode where the reverse redox reaction occurs. One significant outcome of this report is that simple fabrication techniques can be used to prepare DCE systems that have collection efficiencies of up to 97%. This level of efficiency makes it possible to quantitatively measure the charge associated with redox-active thin films interposed between the generator and collector electrodes. This is important, because it provides a means for interrogating species that are not in sufficiently close proximity to an electrode to enable direct electron transfer or electroactive films adsorbed to insulating surfaces. Here, the method is demonstrated by comparing results from this indirect surface interrogation method, using Fe(CN)6(3-) as the redox probe, and direct electroreduction of Au oxide thin films. These experimental results are further compared to finite-element simulations.

6.
Anal Chem ; 86(9): 4302-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24745602

RESUMO

We report electrochemical detection of collisions between individual magnetic microbeads, present at subattomolar concentrations, and electrode surfaces. This limit of detection is 4 orders of magnitude lower than has been reported previously, and it is enabled by using a magnetic field to preconcentrate the microbeads prior to detection in a microfluidic electrochemical cell. Importantly, the frequency of collisions between the microbeads and the electrode is not compromised by the low concentration of microbeads. These findings represent an unusual case of detecting individual electrochemical events at very low analyte concentration. In addition to experiments supporting these claims, finite-element simulations provide additional insights into the nature of the interactions between flowing microbeads and their influence on electrochemical processes.

7.
Anal Chem ; 86(7): 3659-66, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24625315

RESUMO

Here, we report the use of microwire and mesh working electrodes in paper analytical devices fabricated by origami paper folding (oPADs). The important new result is that Au wires and carbon fibers having diameters ranging from micrometers to tens of micrometers can be incorporated into oPADs and that their electrochemical characteristics are consistent with the results of finite element simulations. These electrodes are fully compatible with both hollow channels and paper channels filled with cellulose fibers, and they are easier to incorporate than typical screen-printed carbon electrodes. The results also demonstrate that the Au electrodes can be cleaned prior to device fabrication using aggressive treatments and that they can be easily surface modified using standard thiol-based chemistry.

8.
Langmuir ; 30(44): 13462-9, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25360826

RESUMO

We report on the effect of convection on electrochemically active collisions between individual Pt nanoparticles (PtNPs) and Hg and Au electrodes. Compared to standard electrochemical cells utilizing Hg and Au ultramicroelectrodes (UMEs) used in previous studies of electrocatalytic amplification, microelectrochemical devices offer two major advantages. First, the PtNP limit of detection (0.084 pM) is ∼8 times lower than the lowest concentration measured using UMEs. Second, convection enhances the mass transfer of PtNPs to the electrode surface, which enhances the collision frequency from ∼0.02 pM(-1) s(-1) on UMEs to ∼0.07 pM(-1) s(-1) in microelectrochemical devices. We also show that the size of PtNPs can be measured in flowing systems using data from collision experiments and then validate this finding using multiphysics simulations.

9.
Astrobiology ; 24(1): 1-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150549

RESUMO

Lipids are a geologically robust class of organics ubiquitous to life as we know it. Lipid-like soluble organics are synthesized abiotically and have been identified in carbonaceous meteorites and on Mars. Ascertaining the origin of lipids on Mars would be a profound astrobiological achievement. We enumerate origin-diagnostic features and patterns in two acyclic lipid classes, fatty acids (i.e., carboxylic acids) and acyclic hydrocarbons, by collecting and analyzing molecular data reported in over 1500 samples from previously published studies of terrestrial and meteoritic organics. We identify 27 combined (15 for fatty acids, 12 for acyclic hydrocarbons) molecular patterns and structural features that can aid in distinguishing biotic from abiotic synthesis. Principal component analysis (PCA) demonstrates that multivariate analyses of molecular features (16 for fatty acids, 14 for acyclic hydrocarbons) can potentially indicate sample origin. Terrestrial lipids are dominated by longer straight-chain molecules (C4-C34 fatty acids, C14-C46 acyclic hydrocarbons), with predominance for specific branched and unsaturated isomers. Lipid-like meteoritic soluble organics are shorter, with random configurations. Organic solvent-extraction techniques are most commonly reported, motivating the design of our novel instrument, the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR), which extracts lipids while preserving origin-diagnostic features that can indicate biogenicity.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Ácidos Graxos/análise , Ácidos Carboxílicos , Hidrocarbonetos Acíclicos , Meio Ambiente Extraterreno
10.
J Am Chem Soc ; 135(16): 5994-7, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23590646

RESUMO

Optical tracking of collisions between insulating microbeads and an ultramicroelectrode surface are correlated to electrochemical measurements and 3D simulations. The experiments are based on partial blocking of the electrode surface by the beads. Results obtained using these three methods provide details regarding the radial distribution of landing locations, the extent of current blockage, collision frequency, motion of beads on the electrode surface following collisions, and aggregation behavior both prior to collisions and afterward on the electrode surface.

11.
ACS Sens ; 6(10): 3621-3631, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34546741

RESUMO

Proteases are critical signaling molecules and prognostic biomarkers for many diseases including cancer. There is a strong demand for multiplex bioanalytical techniques that can rapidly detect the activity of extracellular proteases with high sensitivity and specificity. This study demonstrates an activity-based electrochemical biosensor of a 3 × 3 gold microelectrode array for the detection of cathepsin B activity in human serum diluted in a neutral buffer. Proteolysis of ferrocene-labeled peptide substrates functionalized on 200 × 200 µm microelectrodes is measured simultaneously over the nine channels by AC voltammetry. The protease activity is represented by the inverse of the exponential decay time constant (1/τ), which equals to (kcat/KM)[CB] based on the Michaelis-Menten model. An enhanced activity of the recombinant human cathepsin B (rhCB) is observed in a low-ionic-strength phosphate buffer at pH = 7.4, giving a very low limit of detection of 8.49 × 10-4 s-1 for activity and 57.1 pM for the active rhCB concentration that is comparable to affinity-based enzyme-linked immunosorbent assay (ELISA). The cathepsin B presented in the human serum sample is validated by ELISA, which mainly detects the inactive proenzyme, while the electrochemical biosensor specifically measures the active cathepsin B and shows significantly higher decay rates when rhCB and human serum are activated. Analyses of the kinetic electrochemical measurements with spiked active cathepsin B in human serum provide further assessment of the protease activity in the complex sample. This study lays the foundation to develop the gold microelectrode array into a multiplex biosensor for rapid detection of the activity of extracellular proteases toward cancer diagnosis and treatment assessment.


Assuntos
Catepsina B , Ouro , Humanos , Concentração de Íons de Hidrogênio , Microeletrodos , Peptídeo Hidrolases
12.
Biosens Bioelectron ; 165: 112330, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729476

RESUMO

Proteases are a large family of enzymes involved in many important biological processes. Quantitative detection of the activity profile of specific target proteases is in high demand for the diagnosis and monitoring of diseases such as cancers. This study demonstrates the fabrication and characterization of an individually addressable 3 × 3 Au microelectrode array for rapid, multiplex detection of cathepsin B activity based on a simple electrochemical method. The nine individual microelectrodes in the array show highly consistent cyclic voltammetric signals in Au surface cleaning experiments and detecting benchmark redox species in solution. The individual Au microelectrodes are further selectively functionalized with specific ferrocene-labeled peptide molecules which serve as the cognate substrates for the target proteases. Consistent proteolytic kinetics are measured by monitoring the decay of the AC voltammetry signal from the ferrocene label as the peptide molecules are cleaved by cathepsin B. Accurate activity of cathepsin B is derived with an improved fitting algorithm. Simultaneous detection of the proteolysis of cathepsin B on the microelectrode array functionalized with three different hexapeptides is demonstrated, showing the potential of this sensor platform for rapid detection of the activity profiles of multiple proteases in various diseases including many forms of cancer.


Assuntos
Técnicas Biossensoriais , Ouro , Técnicas Eletroquímicas , Microeletrodos , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA