Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639600

RESUMO

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Assuntos
Oryza , Oryza/genética , Citocininas/genética , Nucleosídeos de Purina , N-Glicosil Hidrolases/genética , Nucleosídeos , Parede Celular/genética
2.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840983

RESUMO

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

3.
Genetica ; 147(5-6): 351-358, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31432314

RESUMO

Late flowering sometimes occurs in F1 hybrids between rice varieties (Oryza sativa L.), although the parental varieties show similar days-to-flowering (DTF). The genetic architecture prompting the occurrence of such late flowering is poorly understood. To clarify the genetic architecture of late flowering in F1 hybrids from a cross between rice varieties, 'Koshihikari' and 'IR64', we performed quantitative trait locus (QTL) analysis using an F2 population (selfed progeny of an F1 plant), in which heterozygous genotypes should segregate in a certain proportion in a Mendelian manner. The QTL analysis detected three significant QTLs. At one QTL (putatively Heading date 1), the 'Koshihikari' allele increased DTF, and at the other two QTLs (putatively Heading date 6 and Oryza sativa Pseudo-Response Regulator 37/Heading date 2), the 'IR64' alleles increased DTF. All alleles at these three QTLs showed partial dominance. The combination of the QTLs explained 82.2% of the total phenotypic variance of DTF in the F2 population, with contribution from epistasis between QTLs. There was no difference between DTFs of F1 hybrids and heterozygous genotypes for the three QTLs. Our results demonstrated that the complementary effects accompanied by epistasis of at least three QTLs were responsible for late flowering in F1 hybrids.


Assuntos
Flores/genética , Oryza/genética , Locos de Características Quantitativas , Epistasia Genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Hibridização Genética , Oryza/crescimento & desenvolvimento
4.
Breed Sci ; 69(1): 68-83, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086485

RESUMO

The fungal pathogen Pyricularia oryzae causes blast, a severe disease of rice (Oryza sativa L.). Improving blast resistance is important in rice breeding programs. Inoculation tests have been used to select for resistance genotypes, with DNA marker-based selection becoming an efficient alternative. No comprehensive DNA marker system for race-specific resistance alleles in the Japanese rice breeding program has been developed because some loci contain multiple resistance alleles. Here, we used the Fluidigm SNP genotyping platform to determine a set of 96 single nucleotide polymorphism (SNP) markers for 10 loci with race-specific resistance. The markers were then used to evaluate the presence or absence of 24 resistance alleles in 369 cultivars; results were 93.5% consistent with reported inoculation test-based genotypes in japonica varieties. The evaluation system was successfully applied to high-yield varieties with indica genetic backgrounds. The system includes polymorphisms that distinguish the resistant alleles at the tightly linked Pita and Pita-2 loci, thereby confirming that all the tested cultivars with Pita-2 allele carry Pita allele. We also developed and validated insertion/deletion (InDel) markers for ten resistance loci. Combining SNP and InDel markers is an accurate and efficient strategy for selection for race-specific resistance to blast in breeding programs.

5.
Breed Sci ; 68(2): 200-209, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875603

RESUMO

Seed dormancy is important in rice breeding because it confers resistance to pre-harvest sprouting (PHS). To detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance, we used chromosome segment substitution lines (CSSLs) derived from a cross between the Japanese upland rice cultivar 'Owarihatamochi' and the lowland rice cultivar 'Koshihikari'. In the CSSLs, several chromosomal regions were associated with PHS resistance. Among these, the chromosome 9 segment from 'Owarihatamochi' had the greatest association with increased PHS resistance. Further QTL analysis using an advanced backcross population (BC4F2) derived from a 'Koshihikari' × 'Owarihatamochi' cross revealed two putative QTLs, here designated qSDR9.1 (Seed dormancy 9.1) and qSDR9.2, on chromosome 9. The 'Owarihatamochi' alleles of the two QTLs reduced germination. Further fine mapping revealed that qSDR9.1 and qSDR9.2 were located within 4.1-Mb and 2.3-Mb intervals (based on the 'Nipponbare' reference genome sequence) defined by the simple sequence repeat marker loci RM24039 and RM24260 and Indel_2 and RM24540, respectively. We thus identified two QTLs for PHS resistance in 'Owarihatamochi', even though resistance levels are relatively low in this cultivar. This unexpected finding suggests the advantages of using CSSLs for QTL detection.

6.
Breed Sci ; 67(3): 173-180, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28744170

RESUMO

In this study, we investigated the genetic basis of seed shattering and dormancy in Hokuriku 193 and bred an NIL improved these traits. Analysis of an F3 population from Hokuriku 193 × Koshihikari revealed a general correspondence between seed shattering and genotypes at the qSH1 locus, suggesting a strong influence of this locus on the seed shattering in Hokuriku 193. An F2 population from [ms-bo] Nekken 2 × Hokuriku 193 was also analyzed to identify quantitative trait loci (QTLs) for seed dormancy as measured by germination rate in the first December and March after seed harvest. The results revealed a concurrence QTLs of on chromosomes 1, 3, and 6 (qSDo1, qSDo3, qSDo6). In particular, qSDo1 and qSDo6 were considered regions worthy of active modification because they were QTL regions that promoted seed dormancy when carrying Hokuriku 193 genome regions around. SSDo_NIL, a near isogenic line (NIL) derived from Hokuriku 193 by introgressing Nekken 2 alleles only at the qSH1 locus and qSDo1, did not shatter, and its germination rate was significantly higher than that of Hokuriku 193. Yield performance was similar between SSDo_NIL and Hokuriku 193, suggesting that improvement of seed shattering and dormancy does not affect yield.

7.
Breed Sci ; 67(2): 159-164, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28588393

RESUMO

To investigate the genetic background responsible for blast resistance in Oryza sativa L. 'Hokuriku 193', QTL analysis was conducted using the F3 lines from the cross [ms-bo] Nekken 2 × Hokuriku 193 that were artificially infected with rice blast fungus (Magnaporthe grisea). QTLs were detected on chromosomes 1, 4, 6 and 12 that correlated with greater blast resistance in the Hokuriku 193-type lines. Notably, the QTL on chromosome 12 had a major effect and localized to the same region where Pi20(t), a broad-spectrum blast resistance gene, is positioned, suggesting strongly that the blast resistance of Hokuriku 193 was controlled by Pi20(t). Also, QTL analysis of the lines found to have no Pi20(t) detected two QTLs on chromosome 4 (qBR4-1 and qBR4-2) and one QTL on chromosome 6 (qBR6), of which qBR4-2 and qBR6 correlated with higher percentages of resistant plants in the Hokuriku 193-type lines. The blast susceptibility of BR_NIL (a NIL of Hokuriku 193 from which Pi20(t) was eliminated) was greater than that of Hokuriku 193, suggesting that elimination of Pi20(t) may markedly increase blast susceptibility. The disease severity of BR_NIL was mild, which might be the effect of qBR4-2 and/or qBR6.

8.
Plant Cell Physiol ; 57(9): 1828-38, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27318280

RESUMO

Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.), because it defines harvest seasons and cultivation areas, and affects yields. We used a map-based strategy to clone Heading date 18 (Hd18). The difference in flowering time between the Japanese rice cultivars Koshihikari and Hayamasari was due to a single nucleotide polymorphism within the Hd18 gene, which encodes an amine oxidase domain-containing protein and is homologous to Arabidopsis FLOWERING LOCUS D (FLD). The Hayamasari Hd18 allele and knockdown of Hd18 gene expression delayed the flowering time of rice plants regardless of the day-length condition. Structural modeling of the Hd18 protein suggested that the non-synonymous substitution changed protein stability and function due to differences in interdomain hydrogen bond formation. Compared with those in Koshihikari, the expression levels of the flowering-time genes Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and Rice flowering locus T1 (RFT1) were lower in a near-isogenic line with the Hayamasari Hd18 allele in a Koshihikari genetic background. We revealed that Hd18 acts as an accelerator in the rice flowering pathway under both short- and long-day conditions by elevating transcription levels of Ehd1 Gene expression analysis also suggested the involvement of MADS-box genes such as OsMADS50, OsMADS51 and OsMADS56 in the Hd18-associated regulation of Ehd1 These results suggest that, like FLD, its rice homolog accelerates flowering time but is involved in rice flowering pathways that differ from the autonomous pathways in Arabidopsis.


Assuntos
Flores/fisiologia , Histona Acetiltransferases/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Proteínas de Domínio MADS/genética , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Interferência de RNA
9.
Plant Cell ; 25(5): 1709-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23715469

RESUMO

Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido
10.
Theor Appl Genet ; 129(3): 631-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747044

RESUMO

KEY MESSAGE: A QTL for cold tolerance at the booting stage of rice cultivar 'Kuchum' was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, 'Hitomebore', has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even 'Hitomebore' exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, 'Kuchum', were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having 'Kuchum' alleles around qCT-4 with a 'Hitomebore' genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous 'Kuchum' alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of 'Hitomebore' having 'Silewah' alleles of Ctb1 and Ctb2 and a 'Hokkai PL9' allele of qCTB8 did not exhibit higher cold tolerance than that of 'Hitomebore'. On the other hand, a qLTB3 allele derived from a Chinese cultivar 'Lijiangxintuanheigu' increased cold tolerance of 'Hitomebore', and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of 'Hitomebore' with the 'Kuchum' allele of qCT-4 were highly similar to 'Hitomebore' in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.


Assuntos
Cruzamento , Temperatura Baixa , Oryza/genética , Locos de Características Quantitativas , Adaptação Fisiológica/genética , Alelos , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo
11.
BMC Plant Biol ; 15: 115, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953146

RESUMO

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Assuntos
Ecótipo , Flores/genética , Flores/fisiologia , Oryza/genética , Oryza/fisiologia , Alelos , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Modelos Genéticos , Fotoperíodo , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
12.
Mol Genet Genomics ; 290(3): 1085-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25532750

RESUMO

Brown spots on mature leaves from the heading to ripening stages in rice are considered to be lesions induced by heat stress. However, there are few studies of lesions that are induced by heat stress rather than by pathogen infections. To understand the genetic background underlying such lesions, we used the chromosome segment substitution line (CSSL) SL518, derived from a distant cross between rice cultivars Koshihikari (japonica) and Nona Bokra (indica). We observed brown spots on mature leaf blades of the CSSL, although the parents barely showed any spots. Spot formation in SL518 was accelerated by high temperature, suggesting that the candidate gene for spot formation is related to heat stress response. Using progeny derived from a cross between SL518 and Koshihikari, we mapped the causative gene, BROWN-SPOTTED LEAF 1 (BSPL1), on chromosome 5. We speculated that one or more Nona Bokra genes suppress spot formation caused by BSPL1 and identified candidate genomic regions on chromosomes 2 and 9 using a cross between a near-isogenic line for BSPL1 and other CSSLs possessing Nona Bokra segments in the Koshihikari genetic background. In conclusion, our data support the concept that multiple genes are complementarily involved in brown spot formation induced by heat stress and will be useful for cloning of the novel gene(s) related to the spot formation.


Assuntos
Cromossomos de Plantas/genética , Genes Supressores/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas/genética , Temperatura Alta , Oryza/imunologia , Oryza/microbiologia , Oryza/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Xanthomonas/fisiologia
13.
Breed Sci ; 65(3): 249-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175622

RESUMO

Insertion-deletion (indel) polymorphisms, such as simple sequence repeats, have been widely used as DNA markers to identify QTLs and genes and to facilitate rice breeding. Recently, next-generation sequencing has produced deep sequences that allow genome-wide detection of indels. These polymorphisms can potentially be used to develop high-accuracy polymerase chain reaction (PCR)-based markers. Here, re-sequencing of 5 indica, 2 aus, and 3 tropical japonica cultivars and Japanese elite cultivar 'Koshihikari' was performed to extract regions containing large indels (10-51 bp) shared by diverse cultivars. To design indel markers for the discrimination of genomic regions between 'Koshihikari' and other diverse cultivars, we subtracted the indel regions detected in 'Koshihikari' from those shared in other cultivars. Two sets of indel markers, KNJ8-indel (shared in eight or more cultivars, including 'Khao Nam Jen' as a representative tropical japonica cultivar) and C5-indel (shared in five to eight cultivars), were established, with 915 and 9,899 indel regions, respectively. Validation of the two marker sets by using 23 diverse cultivars showed a high PCR success rate (≥95%) for 83.3% of the KNJ8-indel markers and 73.9% of the C5-indel markers. The marker sets will therefore be useful for the effective breeding of Japanese rice cultivars.

14.
Breed Sci ; 65(3): 216-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26175618

RESUMO

There is increasing evidence that global warming affects the development of rice. High temperatures during ripening increase the ratio of undesirable chalky grains followed by deteriorating grain appearance quality. In order to detect quantitative trait loci (QTLs) controlling the occurrence of white-back and basal-white chalky grains of brown rice, QTL analysis was performed using recombinant inbred lines derived from a cross between two strains, 'Tsukushiroman' (sensitive to heat stress) and 'Chikushi 52' (tolerant of heat stress). The F7 and F8 lines were exposed to heat stress during the ripening period in two locations, Fukuoka and Kagoshima, in Japan. QTLs for white-back grains and basal-white grains were detected on chromosomes 1, 3, and 8, and those for basal-white grains were detected on chromosomes 2, 3, and 12. QTLs on chromosome 8 for white-back grains were shared in the plants grown in both locations. Near-isogenic lines (NILs), which harbored a segment from 'Chikushi 52' on chromosome 8 with the genetic background of 'Tsukushiroman', showed relatively lower ratios of white-back grains than 'Tsukushiroman'. Therefore, insertion of the 'Chikushi 52' genomic region of the QTL on chromosome 8 can improve the quality of rice when it is grown under heat stress conditions.

15.
Breed Sci ; 65(4): 308-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26366113

RESUMO

Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.

16.
Plant Cell ; 22(10): 3280-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20889913

RESUMO

Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.


Assuntos
Endosperma/crescimento & desenvolvimento , Oryza/genética , Proteínas de Armazenamento de Sementes/metabolismo , Amido/análise , Amilopectina/análise , Amilose/análise , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucanos/análise , Temperatura Alta , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/genética
17.
Proc Natl Acad Sci U S A ; 107(38): 16500-5, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823253

RESUMO

Intake of toxic cadmium (Cd) from rice caused Itai-itai disease in the past and it is still a threat for human health. Therefore, control of the accumulation of Cd from soil is an important food-safety issue, but the molecular mechanism for the control is unknown. Herein, we report a gene (OsHMA3) responsible for low Cd accumulation in rice that was isolated from a mapping population derived from a cross between a high and low Cd-accumulating cultivar. The gene encodes a transporter belonging to the P(1B)-type ATPase family, but shares low similarity with other members. Heterologous expression in yeast showed that the transporter from the low-Cd cultivar is functional, but the transporter from the high-Cd cultivar had lost its function, probably because of the single amino acid mutation. The transporter is mainly expressed in the tonoplast of root cells at a similar level in both the low and high Cd-accumulating cultivars. Overexpression of the functional gene from the low Cd-accumulating cultivar selectively decreased accumulation of Cd, but not other micronutrients in the grain. Our results indicated that OsHMA3 from the low Cd-accumulating cultivar limits translocation of Cd from the roots to the above-ground tissues by selectively sequestrating Cd into the root vacuoles.


Assuntos
Cádmio/farmacocinética , Genes de Plantas , Oryza/genética , Oryza/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Cádmio/toxicidade , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Contaminação de Alimentos , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Distribuição Tecidual
18.
Plant Cell Physiol ; 53(4): 709-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22399582

RESUMO

Flowering time of rice depends strongly on photoperiodic responses. We previously identified a quantitative trait locus, Heading date 17 (Hd17), that is associated with a difference in flowering time between Japanese rice (Oryza sativa L.) cultivars. Here, we show that the difference may result from a single nucleotide polymorphism within a putative gene that encodes a homolog of the Arabidopsis EARLY FLOWERING 3 protein, which plays important roles in maintaining circadian rhythms. Our results demonstrate that natural variation in Hd17 may change the transcription level of a flowering repressor, Grain number, plant height and heading date 7 (Ghd7), suggesting that Hd17 is part of rice's photoperiodic flowering pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Oryza/metabolismo , Oryza/fisiologia , Fotoperíodo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Flores/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
19.
J Exp Bot ; 63(2): 773-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22016423

RESUMO

HvCO9 was characterized to elucidate the barley flowering control mechanisms and to investigate the functional diversification of the barley CONSTANS-like (CO-like) genes in flowering. HvCO9 was located on the same chromosome, 1HL, as Ppd-H2 (HvFT3), which is a positive regulator of short-day (SD) flowering. A phylogenetic analysis showed that HvCO9 was located on the same branch of the CO-like gene tree as rice Ghd7 and the barley and wheat VRN2 genes, which are all negative regulators of flowering. High level HvCO9 expressions were observed under SD conditions, whereas its expression levels were quite low under long-day (LD) conditions. HvCO9 expression correlated with HvFT1 and HvFT2 expression under SD conditions, although no clear effect of HvCO9 on HvFT3 expression, or vice versa, under SD conditions was observed. The over-expression of HvCO9 in rice plants produced a remarkable delay in flowering. In transgenic rice, the expression levels of the flowering-related Ehd1 gene, which is a target gene of Ghd7, and its downstream genes were suppressed, causing a delay in flowering. These results suggest that HvCO9 may act as a negative regulator of flowering under non-inductive SD conditions in barley; this activity is similar to that of rice Ghd7 under non-inductive LD conditions, but the functional targets of these genes may be different. Our results indicate that barley has developed its own pathways to control flowering by using homologous genes with modifications for the timing of expression. Further, it is hypothesized that each pathway may target different genes after gene duplication or species diversification.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Hordeum/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Ritmo Circadiano , DNA Complementar/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Expressão Gênica/genética , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Oryza/genética , Oryza/metabolismo , Fotoperíodo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , RNA de Plantas/genética , Especificidade da Espécie , Fatores de Tempo
20.
Nat Food ; 3(8): 597-607, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118598

RESUMO

Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA