RESUMO
Selective area growth by hydride vapor phase epitaxy of GaN nanostructures with different shapes was investigated versus the deposition conditions including temperature and ammonia flux. Growth experiments were carried out on templates of GaN on sapphire masked with SiNx. We discuss two occurrences related to axial and radial growth of GaN nanowires. A growth suppression phenomenon was observed under certain conditions, which was circumvented by applying the cyclic growth mode. A theoretical model involving inhibiting species was developed to understand the growth suppression phenomenon on the masked substrates. Various morphologies of GaN nanocrystals were obtained by controlling the competition between the growth and blocking mechanisms as a function of the temperature and vapor phase composition. The optimal growth conditions were revealed for obtaining regular arrays of â¼5µm long GaN nanowires.
RESUMO
We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50µm h-1and high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%. This is consistent with the composition of 78% estimated from the photoluminescence spectrum of the NWs. Crystal structure analysis of the NWs by transmission electron microscopy indicated random stacking faults related to zinc-blende/wurtzite polytypism. This work demonstrates the ability of HVPE for growing high aspect ratio InGaAs NW arrays.
RESUMO
In this review paper, we focus on the contribution of hydride vapor phase epitaxy (HVPE) to the growth of III-As nanowires (NWs). HVPE is the third epitaxial technique involving gaseous precursors together with molecular beam epitaxy (MBE) and metal-organic VPE (MOVPE) to grow III-V semiconductor compounds. Although a pioneer in the growth of III-V epilayers, HVPE arrived on the scene of NW growth the very last. Yet, HVPE brought different and interesting insights to the topic since HVPE is a very reactive growth system, exhibiting fast growth property, while growth is governed by the temperature-dependent kinetics of surface mechanisms. After a brief review of the specific attributes of HVPE growth, we first feature the innovative polytypism-free crystalline quality of cubic GaAs NWs grown by Au-assisted vapor-liquid-solid (VLS) epitaxy, on exceptional length and for radii down to 6 nm. We then move to the integration of III-V NWs with silicon. Special emphasis is placed on the nucleation issue experienced by both Au-assisted VLS MOVPE and HVPE, and a model demonstrates that the presence of Si atoms in the liquid droplets suppresses nucleation of NWs unless a high Ga concentation is reached in the catalyst droplet. The second known issue is the amphoteric behavior of Si when it is used as doping element for GaAs. On the basis of compared MBE and HVPE experimental data, a model puts forward the role of the As concentration in the liquid Au-Ga-As-Si droplets to yield p-type (low As content) or n-type (high As content) GaAs:Si NWs. We finally describe how self-catalysed VLS growth and condensation growth are implemented by HVPE for the growth of GaAs and InAs NWs on Si.
RESUMO
Controlled growth of In-rich InGaN nanowires/nanorods (NRs) has long been considered as a very challenging task. Here, we present the first attempt to fabricate InGaN NRs by selective area growth using hydride vapor phase epitaxy. It is shown that InGaN NRs with different indium contents up to 90% can be grown by varying the In/Ga flow ratio. Furthermore, nanowires are observed on the surface of the grown NRs with a density that is proportional to the Ga content. The impact of varying the NH3 partial pressure is investigated to suppress the growth of these nanowires. It is shown that the nanowire density is considerably reduced by increasing the NH3 content in the vapor phase. We attribute the emergence of the nanowires to the final step of growth occurring after stopping the NH3 flow and cooling down the substrate. This is supported by a theoretical model based on the calculation of the supersaturation of the ternary InGaN alloy in interaction with the vapor phase as a function of different parameters assessed at the end of growth. It is shown that the decomposition of the InGaN solid alloy indeed becomes favorable below a critical value of the NH3 partial pressure. The time needed to reach this value increases with increasing the input flow of NH3, and therefore the alloy decomposition leading to the formation of nanowires becomes less effective. These results should be useful for fundamental understanding of the growth of InGaN nanostructures and may help to control their morphology and chemical composition required for device applications.
RESUMO
The incorporation of Si into vapor-liquid-solid GaAs nanowires often leads to p-type doping, whereas it is routinely used as an n-dopant of planar layers. This property limits the applications of GaAs nanowires in electronic and optoelectronic devices. The strong amphoteric behavior of Si in nanowires is not yet fully understood. Here, we present the first attempt to quantify this behavior as a function of the droplet composition and temperature. It is shown that the doping type critically depends on the As/Ga ratio in the droplet. In sharp contrast to vapor-solid growth, the droplet contains very few As atoms, which enhance their reverse transfer from solid to liquid. As a result, Si atoms preferentially replace As in GaAs, leading to p-type doping in nanowires. Hydride vapor phase epitaxy provides the highest As concentrations in the catalyst droplets during their vapor-liquid-solid growth, resulting in n-type dopant behavior of Si. We present experimental data on n-doped Si-doped GaAs nanowires grown by this method and explain the doping within our model. These results give a clear route for obtaining n-type or p-type Si doping in GaAs nanowires and may be extended to other III-V nanowires.
RESUMO
Homogenous InGaN nanowires with a controlled indium composition up to 90% are grown on GaN/c-Al2O3 templates by catalyst-free hydride vapor phase epitaxy using InCl3 and GaCl as group III element precursors. The influence of the partial pressures on the growth rate and composition of InGaN nanowires is investigated. It is shown how the InN mole fraction in nanowires can be finely tuned by changing the vapor phase composition. Thermodynamic calculations are presented that take into account different interconnected reactions in the vapor phase and show a good agreement with the compositional data. Energy dispersive x-ray spectroscopy profiles performed on single nanowires show a homogenous indium composition along the entire nanowire length. X-ray diffraction measurements performed on nanowires arrays confirm these data. High-resolution transmission electron microscopy analysis shows the wurtzite crystal structure with a reduced defect density for InGaN nanowires with the highest indium content.
RESUMO
Widegap III-nitride alloys have enabled new classes of optoelectronic devices including light emitting diodes, lasers and solar cells, but it is admittedly challenging to extend their operating wavelength to the yellow-red band. This requires an increased In content x in In x Ga1-x N, prevented by the indium segregation within the miscibility gap. Beyond the known advantage of dislocation-free growth on dissimilar substrates, nanowires may help to extend the compositional range of InGaN. However, the necessary control over the material homogeneity is still lacking. Here, we present In x Ga1-x N nanowires grown by hydride vapor phase epitaxy on silicon substrates, showing rather homogeneous compositions and emitting from blue to red. The InN fraction in nanowires is tuned from x = 0.17 up to x = 0.7 by changing the growth temperature between 630 °C and 680 °C and adjusting some additional parameters. A dedicated model is presented, which attributes the wide compositional range of nanowires to the purely kinetic growth regime of self-catalyzed InGaN nanowires without macroscopic nucleation. These results may pave a new way for the controlled synthesis of indium-rich InGaN structures for optoelectronic applications in the extended spectral range.
RESUMO
Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 µm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 µm h-1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.
RESUMO
GaN nanowires with exceptional lengths are synthesized by vapor-liquid-solid coupled with near-equilibrium hydride vapor phase epitaxy technique on c-plane sapphire substrates. Because of the high decomposition frequency of GaCl precursors and a direct supply of Ga through the catalyst particle, the growth of GaN nanowires with constant diameters takes place at an exceptional growth rate of 130 µm/h. The chemical composition of the catalyst droplet is analyzed by energy dispersive X-ray spectroscopy. High-resolution transmission electron microscopy and selective area diffraction show that the GaN nanowires crystallize in the hexagonal wurzite structure and are defect-free. GaN nanowires exhibit bare top facets without any droplet. Microphotoluminescence displays a narrow and intense emission line (1 meV line width) associated to the neutral-donor bound exciton revealing excellent optical properties of GaN nanowires.
RESUMO
We report the Au catalyst-assisted synthesis of 20 µm long GaAs nanowires by the vapor-liquid-solid hydride vapor phase epitaxy (HVPE) exhibiting a polytypism-free zincblende phase for record radii lower than 15 nm down to 5 nm. HVPE makes use of GaCl gaseous growth precursors at high mass input of which fast dechlorination at the usual process temperature of 715 °C results in high planar growth rate (standard 30-40 µm/h). When it comes to the vapor-liquid-solid growth of nanowires, fast solidification at a rate higher than 100 µm/h is observed. Nanowire growth by HVPE only proceeds by introduction of precursors in the catalyst droplets from the vapor phase. This promotes almost pure axial growth leading to nanowires with a constant cylinder shape over unusual length. The question of the cubic zincblende structure observed in HVPE-grown GaAs nanowires regardless of their radius is at the heart of the paper. We demonstrate that the vapor-liquid-solid growth in our conditions takes place at high liquid chemical potential that originates from very high influxes of both As and Ga. This yields a Ga concentration systematically higher than 0.62 in the Au-Ga-As droplets. The high Ga concentration decreases the surface energy of the droplets, which disables nucleation at the triple phase line thus preventing the formation of wurtzite structure whatever the nanowire radius is.
RESUMO
High aspect ratio, rod-like and single crystal phase GaAs nanowires (NWs) were grown by gold catalyst-assisted hydride vapor phase epitaxy (HVPE). High resolution transmission electron microscopy and micro-Raman spectroscopy revealed polytypism-free zinc blende (ZB) NWs over lengths of several tens of micrometers for a mean diameter of 50 nm. Micro-photoluminescence studies of individual NWs showed linewidths smaller than those reported elsewhere which is consistent with the crystalline quality of the NWs. HVPE makes use of chloride growth precursors GaCl of which high decomposition frequency after adsorption onto the liquid droplet catalysts, favors a direct and rapid introduction of the Ga atoms from the vapor phase into the droplets. High influxes of Ga and As species then yield high axial growth rate of more than 100 µm/h. The diffusion of the Ga atoms in the liquid droplet towards the interface between the liquid and the solid nanowire was investigated by using density functional theory calculations. The diffusion coefficient of Ga atoms was estimated to be 3 × 10(-9) m(2)/s. The fast diffusion of Ga in the droplet favors nucleation at the liquid-solid line interface at the center of the NW. This is further evidence, provided by an alternative epitaxial method with respect to metal-organic vapor phase epitaxy and molecular beam epitaxy, of the current assumption which states that this type of nucleation should always lead to the formation of the ZB cubic phase.