Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3021-3027, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38252876

RESUMO

The effects on the lattice structure and electronic properties of different polymorphs of silver halide, AgX (X = Cl, Br, and I), induced by laser irradiation (LI) and electron irradiation (EI) are investigated using a first-principles approach, based on the electronic temperature (Te) within a two-temperature model (TTM) and by increasing the total number of electrons (Ne), respectively. Ab initio molecular dynamics (AIMD) simulations provide a clear visualization of how Te and Ne induce a structural and electronic transformation process during LI/EI. Our results reveal the diffusion processes of Ag and X ions, the amorphization of the AgX lattices, and a straightforward interpretation of the time evolution for the formation of Ag and X nanoclusters under high values of Te and Ne. Overall, the present work provides fine details of the underlying mechanism of LI/EI and promises to be a powerful toolbox for further cross-scale modeling of other semiconductors.

2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892287

RESUMO

Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Animais
3.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000421

RESUMO

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Rutênio/química , Rutênio/farmacologia , Peptídeos/química , Peptídeos/farmacologia
4.
J Biochem Mol Toxicol ; 37(11): e23455, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37437103

RESUMO

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.


Assuntos
Antioxidantes , Oxidantes , Humanos , Antioxidantes/farmacologia , Oxidantes/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/química , Radicais Livres/farmacologia , Biomarcadores/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768162

RESUMO

Classically, superoxide anion O2•- and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O2 reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O2•-, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity. The role of superoxide dismutase, the enzyme responsible for the removal of most of the superoxide produced in living organisms, is studied. At the same time, the toxicity induced by superoxide and derived radicals is beneficial in the oxidative death of microbial pathogens, which are subsequently engulfed by specialized immune cells, such as neutrophils or macrophages, during the activation of innate immunity. Ultimately, this review describes in some depth the chemistry related to O2•- and how it is harnessed by the innate immune system to produce lysis of microbial agents.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Imunidade Inata
6.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836598

RESUMO

In the present work, the bond breaking/forming events along the intramolecular Diels-Alder (IMDA) reaction of (2E,4Z,6Z)-2(allyloxy)cycloocta-2,4,6-trien-1-one have been revealed within bonding evolution theory (BET) at the density functional theory level, using the M05-2X functional with the cc-pVTZ basis set. Prior to achieving this task, the energy profiles and stationary points at the potential energy surface (PES) have been characterized. The analysis of the results finds that this rearrangement can proceed along three alternative reaction pathways (a-c). Paths a and b involve two steps, while path c is a one-step process. The first step in path b is kinetically favored, and leads to the formation of an intermediate step, Int-b. Further evolution from Int-b leads mainly to 3-b1. However, 2 is the thermodynamically preferred product and is obtained at high temperatures, in agreement with the experimental observations. Regarding the BET analysis along path b, the breaking/forming process is described by four structural stability domains (SSDs) during the first step, which can be summarized as follows: (1) the breaking of the C-O bond with the transfer of its population to the lone pair (V(O)), (2) the reorganization of the electron density with the creation of two V(C) basins, and (3) the formation of a new C-C single bond via the merger of the two previous V(C) basins. Finally, the conversion of Int-b (via TS2-b1) occurs via the reorganization of the electron density during the first stage (the creation of different pseudoradical centers on the carbon atoms as a result of the depopulation of the C-C double bond involved in the formation of new single bonds), while the last stage corresponds to the non-concerted formation of the two new C-C bonds via the disappearance of the population of the four pseudoradical centers formed in the previous stage. On the other hand, along path a, the first step displays three SSDs, associated with the depopulation of the V(C2,C3) and V(C6,C7) basins, the appearance of the new monosynaptic basins V(C2) and V(C7), and finally the merging of these new monosynaptic basins through the creation of the C2-C7 single bond. The second step is described by a series of five SSDs, that account for the reorganization of the electron density within Int-a via the creation of four pseudoradical centers on the C12, C13, C3 and C6 carbon atoms. The last two SSDs deal with the formation of two C-C bonds via the merging of the monosynaptic basins formed in the previous domains.

7.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430532

RESUMO

This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.


Assuntos
Aminoácidos , Cisteína , Aminoácidos/metabolismo , Triptofano , Proteínas , Metionina , Tirosina
8.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555303

RESUMO

This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Humanos , Compostos Clorados/química , Óxidos/química , Oxirredução , Desinfetantes/farmacologia , Cloro , Desinfecção
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142511

RESUMO

In this work, α-Ag2-2xCuxWO4 (0 ≤ x ≤ 0.16) solid solutions with enhanced antibacterial (against methicillin-resistant Staphylococcus aureus) and antifungal (against Candida albicans) activities are reported. A plethora of techniques (X-ray diffraction with Rietveld refinements, inductively coupled plasma atomic emission spectrometry, micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence emissions, and X-ray photoelectron spectroscopy) were employed to characterize the as-synthetized samples and determine the local coordination geometry of Cu2+ cations at the orthorhombic lattice. To find a correlation between morphology and biocide activity, the experimental results were sustained by first-principles calculations at the density functional theory level to decipher the cluster coordinations and electronic properties of the exposed surfaces. Based on the analysis of the under-coordinated Ag and Cu clusters at the (010) and (101) exposed surfaces, we propose a mechanism to explain the biocide activity of these solid solutions.


Assuntos
Desinfetantes , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Desinfetantes/farmacologia , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
Inorg Chem ; 60(2): 1062-1079, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33372756

RESUMO

Silver tungstate (Ag2WO4) shows structural polymorphism with different crystalline phases, namely, orthorhombic, hexagonal, and cubic structures that are commonly known as α, ß, and γ, respectively. In this work, these Ag2WO4 polymorphs were selectively and successfully synthesized through a simple precipitation route at ambient temperature. The polymorph-controlled synthesis was conducted by means of the volumetric ratios of the silver nitrate/tungstate sodium dehydrate precursors in solution. The structural and electronic properties of the as-synthesized Ag2WO4 polymorphs were investigated by using a combination of X-ray diffraction and Rietveld refinements, X-ray absorption spectroscopy, X-ray absorption near-edge structure spectroscopy, field-emission scanning electron microscopy images, and photoluminescence. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, were carried out, leading to an unprecedented glimpse into the atomic-level properties of the morphology and the exposed surfaces of Ag2WO4 polymorphs. Following the analysis of the local coordination of Ag and W cations (clusters) at each exposed surface of the three polymorphs, the structure-property relationship between the morphology and the photocatalytic and antibacterial activities against amiloride degradation under ultraviolet light irradiation and methicillin-resistant Staphylococcus aureus, respectively, was investigated. A possible mechanism of the photocatalytic and antibacterial activity as well the formation process and growth of the polymorphs is also explored and proposed.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Óxidos/farmacologia , Prata/farmacologia , Tungstênio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Catálise , Teoria da Densidade Funcional , Testes de Sensibilidade Microbiana , Modelos Moleculares , Óxidos/química , Tamanho da Partícula , Processos Fotoquímicos , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície , Tungstênio/química , Raios Ultravioleta
11.
Inorg Chem ; 60(8): 5937-5954, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33769807

RESUMO

In this paper, we report the synthesis of silver selenite (Ag2SeO3) by different methods [sonochemistry, ultrasonic probe, coprecipitation, and microwave-assisted hydrothermal methods]. These microcrystals presented a structural long-range order as confirmed by X-ray diffraction (XRD) and Rietveld refinements and a structural short-range order as confirmed by Fourier transform infrared (FTIR) and Raman spectroscopies. X-ray photoelectron spectroscopy (XPS) provided information about the surface of the samples indicating that they were pure. The microcrystals presented different morphologies and sizes due to the synthesis method as observed by field emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were evaluated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. Thermal analysis confirmed the temperature stability of the as-synthetized samples. Further trapping experiments prove that the holes and hydroxyl radicals, to a minor extent, are responsible for the photocatalytic reactions. The experimental results are sustained by first-principles calculations, at the density functional theory (DFT) level, to decipher the structural parameters, electronic properties of the bulk, and surfaces of Ag2SeO3. By matching the experimental FE-SEM images and theoretical morphologies, we are capable of finding a correlation between the morphology and photocatalytic activity, along with photodegradation of the Rhodamine B dye under UV light, based on the different numbers of unsaturated superficial Ag and Se cations (local coordination, i.e., clusters) of each surface.

12.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451055

RESUMO

Ferrimagnetic thin films formerly played a very important role in the development of information storage technology. Now they are again at the forefront of the rising field of spintronics. From new, more efficient magnetic recording media and sensors based on spin valves to the promising technologies envisaged by all-optical switching, ferrimagnets offer singular properties that deserve to be studies both from the point of view of fundamental physics and for applications. In this review, we will focus on ferrimagnetic thin films based on the combination of rare earths (RE) and transition metals (TM).

13.
Inorg Chem ; 59(11): 7453-7468, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407105

RESUMO

Present theoretical and experimental work provides an in-depth understanding of the morphological, structural, electronic, and optical properties of hexagonal and monoclinic polymorphs of bismuth phosphate (BiPO4). Herein, we demonstrate how microwave irradiation induces the transformation of a hexagonal phase to a monoclinic phase in a short period of time and, thus, the photocatalytic performance of BiPO4. To complement and rationalize the experimental results, first-principles calculations have been performed within the framework of density functional theory. This was aimed at obtaining the geometric, energetic, and structural parameters as well as vibrational frequencies; further, the electronic properties (band structure diagram and density of states) of the bulk and corresponding surfaces of both the hexagonal and monoclinic phases of BiPO4 were also acquired. A detailed characterization of the low vibrational modes of both the hexagonal and monoclinic polymorphs is key to explaining the irreversible phase transformation from hexagonal to monoclinic. On the basis of the calculated values of the surface energies, a map of the available morphologies of both phases was obtained by using Wulff construction and compared to the observed scanning electron microscopy images. The BiPO4 crystals obtained after 16-32 min of microwave irradiation provided excellent photodegradation of Rhodamine B under visible-light irradiation. This enhancement was found to be related to the surface energy and the types of clusters formed on the exposed surfaces of the morphology. These findings provide details of the hexagonal-to-monoclinic phase transition in BiPO4 during microwave irradiation; further, the results will assist in the design of electronic devices with higher efficiency and reliability.

14.
Pflugers Arch ; 471(4): 647-654, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552496

RESUMO

Over recent years, the presence of the sweet taste receptor TIR3 in rodent and human insulin-producing pancreatic islet ß-cells was documented. The activation of this receptor by sweet-tasting sucralose mimics several biochemical and functional effects of D-glucose in the ß-cells. The present study extends this analogy to the bioelectrical response of ß-cells. In this respect, sucralose was inefficient in the absence of D-glucose, but induced on occasion electrical activity in mouse ß-cells exposed to low non-stimulatory concentrations of the hexose and potentiated, in a concentration-related manner, the response to stimulatory concentrations of D-glucose. These data indicate that sucralose, acting as an agonist of the TIR3 receptor, exerts an excitatory effect upon pancreatic ß-cell bioelectrical activity.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Papilas Gustativas/fisiologia , Paladar/fisiologia , Animais , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/fisiologia , Camundongos , Papilas Gustativas/metabolismo
15.
J Comput Chem ; 40(26): 2248-2283, 2019 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-31251411

RESUMO

The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the "natural selection" process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the "standard model" of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another? © 2019 Wiley Periodicals, Inc.


Assuntos
Teoria Quântica , Termodinâmica , Humanos
16.
J Pharmacol Exp Ther ; 370(3): 350-359, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31201216

RESUMO

Glucose-stimulated insulin secretion from pancreatic ß-cells is controlled by ATP-regulated potassium (KATP) channels composed of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits. The KATP channel-opener diazoxide is FDA-approved for treating hyperinsulinism and hypoglycemia but suffers from off-target effects on vascular KATP channels and other ion channels. The development of more specific openers would provide critically needed tool compounds for probing the therapeutic potential of Kir6.2/SUR1 activation. Here, we characterize a novel scaffold activator of Kir6.2/SUR1 that our group recently discovered in a high-throughput screen. Optimization efforts with medicinal chemistry identified key structural elements that are essential for VU0071063-dependent opening of Kir6.2/SUR1. VU0071063 has no effects on heterologously expressed Kir6.1/SUR2B channels or ductus arteriole tone, indicating it does not open vascular KATP channels. VU0071063 induces hyperpolarization of ß-cell membrane potential and inhibits insulin secretion more potently than diazoxide. VU0071063 exhibits metabolic and pharmacokinetic properties that are favorable for an in vivo probe and is brain penetrant. Administration of VU0071063 inhibits glucose-stimulated insulin secretion and glucose-lowering in mice. Taken together, these studies indicate that VU0071063 is a more potent and specific opener of Kir6.2/SUR1 than diazoxide and should be useful as an in vitro and in vivo tool compound for investigating the therapeutic potential of Kir6.2/SUR1 expressed in the pancreas and brain.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/metabolismo , Xantinas/farmacologia , Xantinas/farmacocinética , Animais , Canal Arterial/efeitos dos fármacos , Canal Arterial/fisiologia , Glucose/farmacologia , Células HEK293 , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Relação Estrutura-Atividade , Vasodilatação/efeitos dos fármacos , Xantinas/química
17.
Alcohol Clin Exp Res ; 43(8): 1672-1681, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31211868

RESUMO

BACKGROUND: Ethanol (EtOH), one of the most widely consumed substances of abuse, can induce brain damage and neurodegeneration. EtOH is centrally metabolized into acetaldehyde, which has been shown to be responsible for some of the neurophysiological and cellular effects of EtOH. Although some of the consequences of chronic EtOH administration on cell oxidative status have been described, the mechanisms by which acute EtOH administration affects the brain's cellular oxidative status and the role of acetaldehyde remain to be elucidated in detail. METHODS: Swiss CD-I mice were pretreated with the acetaldehyde-sequestering agent d-penicillamine (DP; 75 mg/kg, i.p.) or the antioxidant lipoic acid (LA; 50 mg/kg, i.p.) 30 minutes before EtOH (2.5 g/kg, i.p.) administration. Animals were sacrificed 30 minutes after EtOH injection. Glutathione peroxidase (GPx) mRNA levels; GPx and glutathione reductase (GR) enzymatic activities; reduced glutathione (GSH), glutathione disulfide (GSSG), glutamate, g-L-glutamyl-L-cysteine (Glut-Cys), and malondialdehyde (MDA) concentrations; and protein carbonyl group (CG) content were determined in whole-brain samples. RESULTS: Acute EtOH administration enhanced GPx activity and the GSH/GSSG ratio, while it decreased GR activity and GSSG concentration. Pretreatment with DP or LA only prevented GPx activity changes induced by EtOH. CONCLUSIONS: Altogether, these results show the capacity of a single dose of EtOH to unbalance cellular oxidative homeostasis.


Assuntos
Acetaldeído/antagonistas & inibidores , Encéfalo/metabolismo , Etanol/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Acetaldeído/metabolismo , Animais , Dipeptídeos/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Redutase/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Penicilamina/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Ácido Tióctico/farmacologia
18.
Inorg Chem ; 58(9): 5900-5913, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31012582

RESUMO

Defect-related luminescent materials have attracted interest because of their excellent optical properties and are considered as a less expensive and nontoxic alternative to commonly used lanthanide-based optical systems. These materials are fundamentally and technologically important for the next generation of full-color tunable light-emitting diodes as well as in the biomedical field. In this study, we report the preparation of α-silver vanadate (α-AgVO3, AV) decorated by hydroxyapatite (Ca10(PO4)6(OH)2, HA) with intense photoluminescence (PL) emissions at various HA/AV molar ratios (1:1-1:1/32) by a simple route based on chemical precipitation. The well-defined diffraction peaks observed by X-ray diffraction were all indexed to the monoclinic AV and hexagonal HA phases. Analysis of the results obtained by Fourier transform infrared spectroscopy reveals the presence of short-range structural order as deduced by the characteristic vibrational modes assigned to AV and HA systems. Characterization by scanning and transmission electron microscopies confirms the presence of AV and HA micro- and nanorods, respectively. UV-vis spectroscopy renders band gap energies of 5.80 eV for HA and in the range 2.59-2.65 eV for pure AV and HA/AV samples. The PL data reveal the presence of broad-band emission profiles, typical of defect-related optical centers in materials. Depending on the molar ratio, the emission can be completely tunable from the blue to red spectral regions; in addition, pure white color emission was obtained. On the basis of these results, we propose an order-disorder model induced by structural and interface defects to explain the PL emissions in the HA/AV system. Moreover, our results show that HA/AV composites have superior bactericidal activity against Staphylococcus aureus (methicillin-resistant and methicillin-susceptible) and can be used as a novel multifunctional material.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Durapatita/química , Substâncias Luminescentes/química , Prata/química , Vanadatos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Precipitação Química , Durapatita/farmacologia , Humanos , Luminescência , Substâncias Luminescentes/farmacologia , Modelos Moleculares , Nanotubos/química , Nanotubos/ultraestrutura , Prata/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Vanadatos/farmacologia
19.
Phys Chem Chem Phys ; 21(31): 17221-17231, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31346590

RESUMO

Cubane-type Mo3S4 cluster hydrides decorated with phosphine ligands are active catalysts for the transfer hydrogenation of nitroarenes to aniline derivatives in the presence of formic acid (HCOOH) and triethylamine (Et3N). The process is highly selective and most of the cluster species involved in the catalytic cycle have been identified through reaction monitoring. Formation of a dihydrogen cluster intermediate has also been postulated based on previous kinetic and theoretical studies. However, the different steps involved in the transfer hydrogenation from the cluster to the nitroarene to finally produce aniline remain unclear. Herein, we report an in-depth computational investigation into this mechanism. Et3N reduces the activation barrier associated with the formation of Mo-HHOOCH dihydrogen species. The global catalytic process is highly exergonic and occurs in three consecutive steps with nitrosobenzene and N-phenylhydroxylamine as reaction intermediates. Our computational findings explain how hydrogen is transferred from these Mo-HHOOCH dihydrogen adducts to nitrobenzene with the concomitant formation of nitrosobenzene and the formate substituted cluster. Then, a ß-hydride elimination reaction accompanied by CO2 release regenerates the cluster hydride. Two additional steps are needed for hydrogen transfer from the dihydrogen cluster to nitrosobenzene and N-phenylhydroxylamine to finally produce aniline. Our results show that the three metal centres in the Mo3S4 unit act independently, so the cluster can exist in up to ten different forms that are capable of opening a wide range of reaction paths. This behaviour reveals the outstanding catalytic possibilities of this kind of cluster complexes, which work as highly efficient catalytic machines.

20.
Phys Chem Chem Phys ; 21(39): 22031-22038, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31559996

RESUMO

Material processing has become essential for the proper control, tuning and consequent application of the properties of micro/nanoparticles. In this case, we report herein the capability of the microwave-assisted hydrothermal (MAH) method to prepare the SrTiO3 compound, as a case study of inorganic compounds. Analyses conducted by X-ray diffraction, X-ray photoelectron and X-ray absorption spectroscopies confirmed that the MAH route enables the formation of pristine SrTiO3. The results indicated that the combination of thermal and non-thermal effects during the MAH treatment provides ideal conditions for an efficient and rapid synthesis of pristine SrTiO3 mesocrystals. Scanning electron microscopy images revealed a cube-like morphology (of ca. 1 µm) formed via a self-assembly process, influenced by the MAH time. Additionally, photoluminescence measurements revealed a broad blue emission related to intrinsic defects, which decreased with the MAH synthesis time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA