Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Circulation ; 147(5): 388-408, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36416142

RESUMO

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Camundongos , Animais , Aterosclerose/patologia , Hidroxicolesteróis/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamação/metabolismo , Camundongos Knockout
2.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175931

RESUMO

The aim of this study is to evaluate molecules involved in oxidative stress (OS), inflammation, angiogenesis, and apoptosis, and discern which of these are more likely to be implicated in proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) by investigating the correlation between them in the plasma (PLS) and vitreous body (VIT), as well as examining data obtained from ophthalmological examinations. Type 2 diabetic (T2DM) patients with PDR/DME (PDRG/DMEG; n = 112) and non-DM subjects as the surrogate controls (SCG n = 48) were selected according to the inclusion/exclusion criteria and programming for vitrectomy, either due to having PDR/DME or macular hole (MH)/epiretinal membrane (ERM)/rhegmatogenous retinal detachment. Blood samples were collected and processed to determine the glycemic profile, total cholesterol, and C reactive protein, as well as the malondialdehyde (MDA), 4-hydroxynonenal (4HNE), superoxide dismutase (SOD), and catalase (CAT) levels and total antioxidant capacity (TAC). In addition, interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and caspase 3 (CAS3) were assayed. The VITs were collected and processed to measure the expression levels of all the abovementioned molecules. Statistical analyses were conducted using the R Core Team (2022) program, including group comparisons and correlation analyses. Compared with the SCG, our findings support the presence of molecules involved in OS, inflammation, angiogenesis, and apoptosis in the PLS and VIT samples from T2DM. In PLS from PDRG, there was a decrease in the antioxidant load (p < 0.001) and an increase in pro-angiogenic molecules (p < 0.001), but an increase in pro-oxidants (p < 0.001) and a decline in antioxidants (p < 0.001) intravitreally. In PLS from DMEG, pro-oxidants and pro-inflammatory molecules were augmented (p < 0.001) and the antioxidant capacity diminished (p < 0.001), but the pro-oxidants increased (p < 0.001) and antioxidants decreased (p < 0.001) intravitreally. Furthermore, we found a positive correlation between the PLS-CAT and the VIT-SOD levels (rho = 0.5; p < 0.01) in PDRG, and a negative correlation between the PSD-4HNE and the VIT-TAC levels (rho = 0.5; p < 0.01) in DMEG. Integrative data of retinal imaging variables showed a positive correlation between the central subfield foveal thickness (CSFT) and the VIT-SOD levels (rho = 0.5; p < 0.01), and a negative correlation between the CSFT and the VIT-4HNE levels (rho = 0.4; p < 0.01) in PDRG. In DMEG, the CSFT displayed a negative correlation with the VIT-CAT (rho = 0.5; p < 0.01). Exploring the relationship of the abovementioned potential biomarkers between PLS and VIT may help detecting early molecular changes in PDR/DME, which can be used to identify patients at high risk of progression, as well as to monitor therapeutic outcomes in the diabetic retina.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/metabolismo , Antioxidantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Espécies Reativas de Oxigênio , Estresse Oxidativo , Inflamação , Diabetes Mellitus Tipo 2/complicações , Superóxido Dismutase/metabolismo
3.
Diabetologia ; 60(9): 1801-1812, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28608285

RESUMO

AIMS/HYPOTHESIS: Recent clinical studies indicate that glucagon-like peptide-1 (GLP-1) analogues prevent acute cardiovascular events in type 2 diabetes mellitus but their mechanisms remain unknown. In the present study, the impact of GLP-1 analogues and their potential underlying molecular mechanisms in insulin resistance and atherosclerosis are investigated. METHODS: Atherosclerosis development was evaluated in Apoe -/- Irs2 +/- mice, a mouse model of insulin resistance, the metabolic syndrome and atherosclerosis, treated with the GLP-1 analogues lixisenatide or liraglutide. In addition, studies in Apoe -/- Irs2 +/- mice and mouse-derived macrophages treated with lixisenatide were performed to investigate the potential inflammatory intracellular pathways. RESULTS: Treatment of Apoe -/- Irs2 +/- mice with either lixisenatide or liraglutide improved glucose metabolism and blood pressure but this was independent of body weight loss. Both drugs significantly decreased atheroma plaque size. Compared with vehicle-treated control mice, lixisenatide treatment generated more stable atheromas, with fewer inflammatory infiltrates, reduced necrotic cores and thicker fibrous caps. Lixisenatide-treated mice also displayed diminished IL-6 levels, proinflammatory Ly6Chigh monocytes and activated T cells. In vitro analysis showed that, in macrophages from Apoe -/- Irs2 +/- mice, lixisenatide reduced the secretion of the proinflammatory cytokine IL-6 accompanied by enhanced activation of signal transducer and activator of transcription (STAT) 3, which is a determinant for M2 macrophage differentiation. STAT1 activation, which is essential for M1 phenotype, was also diminished. Furthermore, atheromas from lixisenatide-treated mice showed higher arginase I content and decreased expression of inducible nitric oxide synthase, indicating the prevalence of the M2 phenotype within plaques. CONCLUSIONS/INTERPRETATION: Lixisenatide decreases atheroma plaque size and instability in Apoe -/- Irs2 +/- mice by reprogramming macrophages towards an M2 phenotype, which leads to reduced inflammation. This study identifies a critical role for this drug in macrophage polarisation inside plaques and provides experimental evidence supporting a novel mechanism of action for GLP-1 analogues in the reduction of cardiovascular risk associated with insulin resistance.


Assuntos
Aterosclerose/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeos/uso terapêutico , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator de Transcrição STAT3/metabolismo
4.
Biochim Biophys Acta ; 1852(9): 1729-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26022372

RESUMO

Single nucleotide polymorphisms near the Ink4/Arf locus have been associated with type-2 diabetes mellitus. Previous studies indicate a protective role of the locus in the carbohydrate metabolism derangement associated with ageing in wild-type mice. The present study demonstrates that the increased Ink4/Arf locus expression in 1-year-old mice, partially-deficient for the insulin receptor substrate (IRS)2 (Irs2+/-SuperInk4/Arf mice) ameliorates hepatic steatosis, inflammation and insulin resistance. Irs2+/-SuperInk4/Arf mice displayed improved glucose tolerance and insulin sensitivity compared with Irs2+/- mice which were glucose intolerant and insulin resistant compared with age-matched wild-type mice. These changes in Irs2+/- mice were accompanied by enhanced hepatic steatosis, proinflammatory macrophage phenotype, increased Ly6C(hi)-monocyte percentage, T-lymphocyte activation and MCP1 and TNF-α cytokine levels. In Irs2+/-SuperInk4/Arf mice, steatosis and inflammatory parameters were markedly reduced and similar to those of wild-type counterparts. In vivo insulin signalling also revealed reduced activation of the IRS/AKT-dependent signalling in Irs2+/- mice. This was restored upon increased locus expression in Irs2+/-SuperInk4/Arf mice which display similar activation levels as those for wild-type mice. In vivo treatment of Irs2+/-SuperInk4/Arf mice with TNF-α diminished insulin canonical IRS/AKT-signalling and enhanced the stress SAPK/JNK-phosphoSer307IRS1-pathway suggesting that cytokine levels might potentially affect glucose homeostasis through changes in these insulin-signalling pathways. Altogether, these results indicate that enhanced Ink4/Arf locus expression restores glucose homeostasis and that this is associated with diminished hepatic steatosis and inflammation in mice with insulin resistance. Therefore, pharmacological interventions targeted to modulate the Ink4/Arf locus expression could be a tentative therapeutic approach to alleviate the inflammation associated with insulin resistance.

5.
Front Med (Lausanne) ; 10: 1157773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305138

RESUMO

Introduction: Glaucoma is a chronic neurodegenerative disease, which is the leading cause of irreversible blindness worldwide. As a response to high intraocular pressure, the clinical and molecular glaucoma biomarkers indicate the biological state of the visual system. Classical and uncovering novel biomarkers of glaucoma development and progression, follow-up, and monitoring the response to treatment are key objectives to improve vision outcomes. While the glaucoma imaging field has successfully validated biomarkers of disease progression, there is still a considerable need for developing new biomarkers of early glaucoma, that is, at the preclinical and initial glaucoma stages. Outstanding clinical trials and animal-model study designs, innovative technology, and analytical approaches in bioinformatics are essential tools to successfully uncover novel glaucoma biomarkers with a high potential for translation into clinical practice. Methods: To better understand the clinical and biochemical-molecular-genetic glaucoma pathogenesis, we conducted an analytical, observational, and case-comparative/control study in 358 primary open-angle glaucoma (POAG) patients and 226 comparative-control individuals (CG) to collect tears, aqueous humor, and blood samples to be processed for identifying POAG biomarkers by exploring several biological pathways, such as inflammation, neurotransmitter/neurotrophin alteration, oxidative stress, gene expression, miRNAs fingerprint and its biological targets, and vascular endothelial dysfunction, Statistics were done by using the IBM SPSS 25.0 program. Differences were considered statistically significant when p ≤ 0.05. Results: Mean age of the POAG patients was 70.03 ± 9.23 years, and 70.62 ± 7.89 years in the CG. Malondialdehyde (MDA), nitric oxide (NO), interleuquin (IL)-6, endothelin-1 (ET-1), and 5 hydroxyindolacetic acid (5-HIAA), displayed significantly higher levels in the POAG patients vs. the CG (p < 0.001). Total antioxidant capacity (TAC), brain derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), solute carrier family 23-nucleobase transporters-member 2 (SLC23A2) gene, and the glutathione peroxidase 4 (GPX4) gene, showed significantly lower levelsin the POAG patients than in the CG (p < 0.001). The miRNAs that differentially expressed in tear samples of the POAG patients respect to the CG were the hsa miR-26b-5p (involved in cell proliferation and apoptosis), hsa miR-152-3p (regulator of cell proliferation, and extracellular matrix expression), hsa miR-30e-5p (regulator of autophagy and apoptosis), and hsa miR-151a-3p (regulator of myoblast proliferation). Discussion: We are incredibly enthusiastic gathering as much information as possible on POAG biomarkers to learn how the above information can be used to better steer the diagnosis and therapy of glaucoma to prevent blindness in the predictable future. In fact, we may suggest that the design and development of blended biomarkers is a more appropriate solution in ophthalmological practice for early diagnosis and to predict therapeutic response in the POAG patients.

6.
J Clin Med ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202081

RESUMO

Knowledge on the underlying mechanisms and molecular targets for managing the ocular complications of type 2 diabetes mellitus (T2DM) remains incomplete. Diabetic retinopathy (DR) is a major cause of irreversible visual disability worldwide. By using ophthalmological and molecular-genetic approaches, we gathered specific information to build a data network for deciphering the crosslink of oxidative stress (OS) and apoptosis (AP) processes, as well as to identify potential epigenetic modifications related to noncoding RNAs in the eyes of patients with T2DM. A total of 120 participants were recruited, being classified into two groups: individuals with T2MD (T2MDG, n = 67), divided into a group of individuals with (+DR, n = 49) and without (-DR, n = 18) DR, and a control group (CG, n = 53). Analyses of compiled data reflected significantly higher plasma levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and significantly lower total antioxidant capacity (TAC) in the +DR patients compared with the -DR and the CG groups. Furthermore, the plasma caspase-3 (CAS3), highly involved in apoptosis (AP), showed significantly higher values in the +DR group than in the -DR patients. The microRNAs (miR) hsa-miR 10a-5p and hsa-miR 15b-5p, as well as the genes BCL2L2 and TP53 involved in these pathways, were identified in relation to DR clinical changes. Our data suggest an interaction between OS and the above players in DR pathogenesis. Furthermore, potential miRNA-regulated target genes were identified in relation to DR. In this concern, we may raise new diagnostic and therapeutic challenges that hold the potential to significantly improve managing the diabetic eye.

7.
Eur J Intern Med ; 102: 80-87, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35570127

RESUMO

AIMS: To develop a simple multivariate predictor model of incident type 2 diabetes in general population. METHODS: Participants were recruited from the Spanish Di@bet.es cohort study with 2570 subjects meeting all criteria to be included in the at-risk sample studied here. Information was collected using an interviewer-administered structured questionnaire, followed by physical and clinical examination. CHAID algorithm, which collects the information of individuals with and without type 2 diabetes, was used to develop a decision tree based type 2 diabetes prediction model. RESULTS: 156 individuals were identified as having developed type 2 diabetes (6.5% incidence). Fasting plasma glucose (FPG) at the beginning of the study was the main predictive variable for incident type 2 diabetes: FPG ≤ 92 mg/dL (ref.), 92-106 mg/dL (OR = 3.76, 95%CI = 2.36-6.00), > 106 mg/dL (OR = 13.21; 8.26-21.12). More than 25% of subjects starting follow-up with FPG levels > 106 mg/dL developed type 2 diabetes. When FPG <106 mg/dL, other variables (fasting triglycerides (FTGs), BMI or age) were needed. For levels ≤ 92 mg/dL, higher FTGs levels increased risk of incident type 2 diabetes (FTGs > 180 mg/dL, OR = 14.57; 4.89-43.40) compared with the group of FTGs ≤ 97 mg/dL (FTGs  = 97-180 mg/dL, OR = 3.12; 1.05-9.24). This model correctly classified 93.5% of individuals. CONCLUSIONS: The type 2 diabetes prediction model is based on FTGs, FPG, age, gender, and BMI values. Utilizing commonly available clinical data and a simple blood test, a simple tree diagram helps identify subjects at risk of developing type 2 diabetes, even in apparently low risk subjects with normal FPG.


Assuntos
Diabetes Mellitus Tipo 2 , Glicemia , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Jejum , Humanos , Incidência , Fatores de Risco
8.
J Clin Med ; 11(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233515

RESUMO

Open-angle glaucoma (OAG), the most prevalent clinical type of glaucoma, is still the main cause of irreversible blindness worldwide. OAG is a neurodegenerative illness for which the most important risk factor is elevated intraocular pressure (IOP). Many questions remain unanswered about OAG, such as whether nutritional or toxic habits, other personal characteristics, and/or systemic diseases influence the course of glaucoma. As such, in this study, we performed a multicenter analytical, observational, case-control study of 412 participants of both sexes, aged 40-80 years, that were classified as having ocular hypertension (OHT) or OAG. Our primary endpoint was to investigate the relationship between specific lifestyle habits; anthropometric and endocrine-metabolic, cardiovascular, and respiratory events; and commonly used psychochemicals, with the presence of OHT or OAG in an ophthalmologic population from Spain and Portugal. Demographic, epidemiological, and ocular/systemic clinical data were recorded from all participants. Data were analyzed using the R Statistics v4.1.2 and RStudio v2021.09.1 programs. The mean age was 62 ± 15 years, with 67-80 years old comprising the largest subgroup sample of participants in both study groups. The central corneal thickness (ultrasound pachymetry)-adjusted IOP (Goldman tonometry) in each eye was 20.46 ± 2.35 and 20.1 ± 2.73 mmHg for the OHT individuals, and 15.8 ± 3.83 and 16.94 ± 3.86 mmHg for the OAG patients, with significant differences between groups (both p = 0.001). The highest prevalence of the surveyed characteristics in both groups was for overweight/obesity and daily coffee consumption, followed by psychochemical drug intake, migraine, and peripheral vasospasm. Our data show that overweight/obesity, migraine, asthma, and smoking are major risk factors for conversion from OHT to OAG in this Spanish and Portuguese population.

9.
Nutrients ; 12(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066385

RESUMO

Macronutrients represent risk factors for hyperlipidemia or diabetes. Lipid alterations and type 2 diabetes mellitus are global health problems. Overexpression of sterol regulatory element-binding factor (Srebf2) in transgenic animals is linked to elevated cholesterol levels and diabetes development. We investigated the impact of increased Srebf2 locus expression and the effects of control and high-fat, high-sucrose (HFHS) diets on body weight, glucose and lipid metabolisms in transgenic mice (S-mice). Wild type (WT) and S-mice were fed with both diets for 16 weeks. Plasma glucose, insulin and lipids were assessed (n = 25). Immunostainings were performed in liver, pancreas and fat (N = 10). Expression of Ldlr and Hmgcr in liver was performed by RT-PCR (N = 8). Control diet: S-mice showed reduced weight, insulin, total and HDL cholesterol and triglycerides (TG). HFHS diet widened differences in weight, total and HDL cholesterol, insulin and HOMA index but increased TG in S-mice. In S-mice, adipocyte size was lower while HFHS diet produced lower increase, pancreatic ß-cell mass was lower with both diets and Srebf2, Ldlr and Hmgcr mRNA levels were higher while HFHS diet produced a rise in Srebf2 and Hmgcr levels. Srebf2 complete gene overexpression seems to have beneficial effects on metabolic parameters and to protect against HFHS diet effects.


Assuntos
Glicemia , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Expressão Gênica , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Insulina/sangue , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Transl Res ; 203: 31-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176239

RESUMO

Previous studies indicate a role of CDKN2A/2B/2BAS genes in atherosclerosis and type 2 diabetes mellitus (T2DM). Progression of these diseases is accompanied by T-cell imbalance and chronic inflammation. Our main objective was to investigate a potential association between CDKN2A/2B/2BAS gene expression and T cell phenotype in T2DM and coronary artery disease (CAD) in humans, and to explore the therapeutic potential of these genes to restore immune cell homeostasis and disease progression. Reduced mRNA levels of CDKN2A (p16Ink4a), CDKN2B (p15Ink4b), and CDKN2BAS were observed in human T2DM and T2DM-CAD subjects compared with controls. Protein levels of p16Ink4a and p15Ink4b were also diminished in T2DM-CAD patients while CDK4 levels, the main target of p16Ink4a and p15Ink4b, were augmented in T2DM and T2DM-CAD subjects. Both patient groups displayed higher activated CD3+CD69+ T cells and proatherogenic CD14++CD16+ monocytes, while CD4+CD25+CD127 regulatory T (Treg cells) cells were decreased. Treatment of primary human lymphocytes with PD0332991, a p16Ink4a/p15Ink4b mimetic drug and a proven CDK4 inhibitor, increased Treg cells and the levels of activated transcription factor phosphoSTAT5. In vivo PD0332991 treatment of atherosclerotic apoE-/- mice and insulin resistant apoE-/-Irs2+/- mice augmented Foxp3-expressing Treg cells and decreased lesion size. Thus, atherosclerosis complications in T2DM associate with altered immune cell homeostasis, diminished CDKN2A/2B/2BAS expression, and increased CDK4 levels. The present study also suggests that the treatment with drugs that mimic CDKN2A/2B genes could potential be considered as a promising therapy to delay atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Animais , Genes p16 , Humanos , Leucócitos Mononucleares , Masculino , Camundongos , Camundongos Knockout para ApoE , Neointima
11.
Thromb Haemost ; 116(2): 379-93, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27172975

RESUMO

Coexistence of insulin resistance (IR) and metabolic syndrome (MetS) increases the risk of cardiovascular disease (CVD). Genetic studies in diabetes have linked Hepatic Lipase (HL) to an enhanced risk of CVD while others indicate a role of HL in inflammatory cells. Thus, we explored the role of HL on atherosclerosis and inflammation in a mouse model of MetS/IR, (apoE-/-Irs2+/- mice) and in patients with MetS and IR. HL-deficiency in apoE-/-Irs2+/- mice reduced atheroma size, plaque vulnerability, leukocyte infiltration and macrophage proliferation. Compared with apoE-/-Irs2+/-HL+/+ mice, MCP1, TNFα and IL6 plasma levels, pro-inflammatory Ly6Chi monocytes and activated(CD69+)-T lymphocytes were also decreased in apoE-/-Irs2+/-HL-/- mice. The LIGHT (Tumour necrosis factor ligand superfamily member 14, TNFSF14)/Lymphotoxin ß-Receptor(LTß-R) pathway, which is involved in T-cell and macrophage activation, was diminished in plasma and in apoE-/-Irs2+/-HL-/- mouse atheromas. Treatment of apoE-/-Irs2+/-HL-/- mice with LIGHT increased the number of Ly6Chi-monocytes and lesion size. Acutely LIGHT-treated apoE-/- mice displayed enhanced proliferating Ly6Chi-monocytes and increased activation of the mitogen-activated protein kinase p38, suggesting that LIGHT/LTß-R axis might promote atherogenesis by increasing proinflammatory monocytes and proliferation. Notably, MetS-IR subjects with increased atherosclerosis displayed up-regulation of the LIGHT/LTß-R axis, enhanced inflammatory monocytes and augmented HL mRNA expression in circulating leukocytes. Thus, HL-deficiency decreases atherosclerosis in MetS/IR states by reducing inflammation and macrophage proliferation which are partly attributed to reduced LIGHT/LTß-R pathway. These studies identify the LIGHT/LTß-R axis as a main pathway in atherosclerosis and suggest that its inactivation might ameliorate inflammation and macrophage proliferation associated with atherosclerosis burden in MetS/IR.


Assuntos
Aterosclerose/prevenção & controle , Resistência à Insulina/fisiologia , Lipase/deficiência , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Aterogênica/efeitos adversos , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Lipase/genética , Lipase/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J Endocrinol ; 227(3): 179-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423094

RESUMO

Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease, which affects up to 90% of obese people and nearly 70% of the overweight, is commonly associated with MetS characteristics such as obesity, insulin resistance, hypertension and dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hypercholesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation and steatosis. In addition, compared with WT mice, HL(-/-) mice exhibited enhanced circulating MCP1 levels, monocytosis and higher percentage of CD4+Th17+ cells. Consistent with increased inflammation, livers from HL(-/-) mice had augmented activation of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases in livers from WT mice. Analysis of HL(-/-) and WT mice fed regular chow diet showed dyslipidemia and glucose intolerance in HL(-/-) mice without any other changes in inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes hepatic steatosis and inflammation in mice which are, at least in part, mediated by the activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses the viability of therapeutic strategies based on the modulation of these kinases to reduce hepatic steatosis associated to lipase dysfunction.


Assuntos
Dislipidemias/metabolismo , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Glicemia/metabolismo , Quimiocina CCL2/sangue , Dieta Hiperlipídica , Dislipidemias/genética , Intolerância à Glucose/genética , Inflamação/genética , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipase/genética , Lipídeos/sangue , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Pâncreas/metabolismo
13.
Cardiovasc Res ; 103(2): 324-36, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24788416

RESUMO

AIMS: Insulin resistance (IR) is a major risk factor for cardiovascular disease and atherosclerosis. Life-threatening acute events are mainly due to rupture of unstable plaques, and the role of vascular smooth muscle cells (VSMCs) in this process in IR, Type 2 diabetes mellitus, and metabolic syndrome (T2DM/MetS) has not been fully addressed. Therefore, the role of VSMC survival in the generation of unstable plaques in T2DM/MetS and the involvement of inflammatory mediators was investigated. METHODS AND RESULTS: Defective insulin receptor substrate 2 (IRS2)-mediated signalling produced insulin-resistant VSMCs with reduced survival, migration, and higher apoptosis than control cells. Silencing of IRS2 or inhibition of the V-akt murine thymomaviral oncogene homologue kinase (AKT)-extracellular signal-regulated kinase (ERK)-dependent pathway in VSMCs augmented expression of the inflammatory chemokine fractalkine (CX3CL1) and its receptor CX3CR1, previously involved in atheroma plaque vulnerability. Interestingly, treatment of VSMCs with CX3CL1 promoted apoptosis in the presence of other stimuli or when the AKT pathway was blocked. Analysis of a mouse model of IR-MetS and accelerated atherosclerosis, apoE-/-Irs2+/- mice, showed reduced VSMC survival, unstable plaques, and up-regulation of CX3CL1/CX3CR1 axis compared with apoE-/- mice. Human studies showed augmented soluble CX3CL1 plasma levels and CX3CR1 expression in monocytes from IR-MetS subjects compared with controls. A positive correlation between insulin levels, homeostatic model assessment (HOMA) index, carotid atherosclerosis, and CX3CR1 mRNA levels was also found in all patients. CONCLUSION: IR increases plaque vulnerability by augmenting the CX3CL1/CX3CR1 axis, which is mechanistically linked to reduced VSMC survival. Thus, modulation of IRS2-dependent signalling emerges as a potential therapeutic strategy to promote VSMC survival and atheroma plaque stability and to reduce inflammatory mediators in IR-MetS.


Assuntos
Aterosclerose/metabolismo , Quimiocina CX3CL1/metabolismo , Resistência à Insulina/genética , Músculo Liso Vascular/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Receptor 1 de Quimiocina CX3C , Sobrevivência Celular/fisiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA