Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 112(7): 1431-1443, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34384240

RESUMO

Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Sementes , Solanum tuberosum , Teorema de Bayes , Equador , Quênia , Doenças das Plantas/prevenção & controle
2.
Phytopathology ; 91(12): 1189-96, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18943334

RESUMO

ABSTRACT A means for determining the rate of release, Q (spores per square meter per second), of spores from a source of inoculum is paramount for quantifying their further dispersal and the potential spread of disease. Values of Q were obtained for Phytophthora infestans sporangia released from an area source of diseased plants in a potato canopy by comparing the concentrations of airborne sporangia measured at several heights above the source, with the concentrations predicted by a Lagrangian Stochastic simulation model. An independent estimate of Q was obtained by quantifying the number of sporangia per unit area of source at the beginning of each sampling day by harvesting diseased plant tissue and enumerating sporangia from these samples. This standing spore crop was the potential number of sporangia released per area of source during the day. The standing spore crop was apportioned into time segments corresponding to sporangia concentration measurement periods using the time trace of sporangia sampled above the source by a Burkard continuous suction spore sampler. This apportionment of the standing spore crop yielded potential release rates that were compared with modeled release rates. The two independent estimates of Q were highly correlated (P = 0.003), indicating that the model has utility for predicting release rates for P. infestans sporangia and the spread of disease between fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA