RESUMO
The NLRP3 inflammasome plays a crucial role in the inflammatory response, reacting to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). This response is essential for combating infections and restoring tissue homeostasis. However, chronic activation can lead to detrimental effects, particularly in neuropsychiatric and neurodegenerative diseases. Our study seeks to provide a method to effectively measure the NLRP3 inflammasome's activation within cerebral organoids (COs), providing insights into the underlying pathophysiology of these conditions and enabling future studies to investigate the development of targeted therapies.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Organoides , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Organoides/metabolismo , Inflamassomos/metabolismo , Humanos , Animais , Encéfalo/metabolismoRESUMO
INTRODUCTION: Neuropsychiatric diseases are responsible for one of the highest burden of morbidity and mortality worldwide. These illnesses include schizophrenia, bipolar disorder, and major depression. Individuals affected by these diseases may present mitochondrial dysfunction and oxidative stress. Additionally, patients also have increased peripheral and neural chronic inflammation. The Brazilian fruit, açaí, has been demonstrated to be a neuroprotective agent through its recovery of mitochondrial complex I activity. This extract has previously shown anti-inflammatory effects in inflammatory cells. However, there is a lack of understanding of potential anti-neuroinflammatory mechanisms, such as cell cycle involvement. OBJECTIVE: The objective of this study is to evaluate the anti-neuroinflammatory potential of an açaí extract in lipopolysaccharide-activated BV-2 microglia cells. METHODS: Açaí extract was produced and characterized through high performance liquid chromatography. Following açaí extraction and characterization, BV-2 microglia cells were activated with LPS and a dose-response curve was generated to select the most effective açaí dose to reduce cellular proliferation. This dose was then used to assess reactive oxygen species (ROS) production, double-strand DNA release, cell cycle modulation, and cytokine and caspase protein expression. RESULTS: Characterization of the açaí extract revealed 10 bioactive molecules. The extract reduced cellular proliferation, ROS production, and reduced pro-inflammatory cytokines and caspase 1 protein expression under 1 µg/mL in LPS-activated BV-2 microglia cells but had no effect on double strand DNA release. Additionally, açaí treatment caused cell cycle arrest, specifically within synthesis and G2/Mitosis phases. CONCLUSION: These results suggest that the freeze-dried hydroalcoholic açaí extract presents high anti-neuroinflammatory potential.
Assuntos
Euterpe , Microglia , Extratos Vegetais , Animais , Linhagem Celular , Citocinas/metabolismo , Euterpe/química , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Brain disorders (BD) including neuropsychiatric and neurodegenerative diseases, are often associated with impairments in mitochondrial function and oxidative damage that can lead to neuronal injury. The mitochondrial complex I enzyme is one of the main sites of ROS generation and is implicated in many BD pathophysiologies. Despite advances in therapeutics for BD management, conventional pharmacotherapy still cannot efficiently control neuronal redox imbalance and mitochondrial dysfunction. Araucaria angustifolia is one of the main pine species in South America and presents a notable therapeutic history in folk medicine. A. angustifolia extract (AAE), obtained from the natural waste named bracts, is rich in flavonoids; molecules able to regulate cell redox metabolism. We examined the effects of AAE on rotenone-induced mitochondrial complex I dysfunction in human dopaminergic SH-SY5Y cells. AAE restored complex I assembly and activity mainly through overexpression of NDUFS7 protein and NDUFV2 gene levels. These findings were accompanied by a reduction in the generation of neuronal reactive oxygen species and lipid peroxidation. Our data demonstrates, for the first time, that AAE exerts in vitro neuroprotective effects, thus making it an interesting source for future drug development in BD-associated mitochondrial dysfunctions.
Assuntos
Araucaria/metabolismo , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/metabolismo , Apoptose/efeitos dos fármacos , Araucaria/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , América do SulRESUMO
Several studies have shown that a high consumption of vegetables and fruits is consistently associated with a low risk of oxidative stress-induced diseases, which includes some degenerative diseases such as amyotrophic lateral sclerosis, Alzheimer and Parkinson. Therefore, the objective of this study is to verify the effects of conventional and organic grape juice in the modulation of the neurotrophic factor (BDNF) and astrocytic markers protein (S100B) in hippocampus and frontal cortex of Wistar rats. In this study, 24 male Wistar rats were divided into three groups. To the first one, it was given organic purple grape juice; to the second, conventional grape juice, while the last one received only saline. After 30 days, all rats were sacrificed and hippocampus and frontal cortex were dissected. The animals that received organic and conventional grape juice showed, in frontal cortex, an elevated BNDF levels in relation to saline group. However, S100B levels did not change. These results showed that grape juices are able to modulate important marker in brain tissue, and could be an important factor to prevent brain diseases.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/análise , Lobo Frontal/química , Sucos de Frutas e Vegetais , Hipocampo/química , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Vitis/química , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Alimentos Orgânicos , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Distribuição Aleatória , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacosRESUMO
Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics.
Assuntos
Transtorno Bipolar/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Transtornos Psicóticos/metabolismo , HumanosRESUMO
The aim of this study was to elucidate whether glutathione is involved in lithium's ability to decrease carbonylation and nitration produced by complex I inhibition, which is consistently found in BD. Neuroblastoma cells were treated with rotenone, a complex I inhibitor. Our results suggest that glutathione is essential for lithium's ability to ameliorate rotenone-induced protein carbonylation, but not nitration.
Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Glutationa/metabolismo , Compostos de Lítio/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Tirosina/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Imuno-Histoquímica , Neuroblastoma/metabolismo , Rotenona/farmacologia , Tirosina/metabolismo , Desacopladores/farmacologiaRESUMO
OBJECTIVE: Increases in oxidative stress have been consistently reported in younger patients with bipolar disorder (BD) in postmortem brain and blood samples studies. Changes in oxidative stress are also associated with the natural aging process. Thus, the investigation of oxidative stress across the life span of patients with BD is crucial. METHODS: We compared the levels of oxidative damage to proteins and lipids in plasma from 110 euthymic older patients with BD I or II (mean±SD age: 63.9±9.7 years) and 75 older healthy individuals (66.0±9.6 years). To assess protein oxidation, we measured the plasma levels of protein carbonyl (PC) and 3-nitrotyrosine (3-NT) using the ELISA technique. To assess lipid peroxidation, we measured plasma levels of lipid hydroperoxide (LPH) and 4-hydroxynonenal (4-HNE) using spectrophotometric assays. RESULTS: LPH levels were higher in patients than in the comparison healthy individuals, whereas there were no significant differences for PC, 3-NT, and 4-HNE between the two groups. CONCLUSIONS: The increased levels of an early component of the peroxidation chain (LPH) in euthymic older patients with BD support the hypothesis of a persistent effect of reactive species of oxygen in patients with BD into late life.
Assuntos
Aldeídos/sangue , Transtorno Bipolar/sangue , Peróxidos Lipídicos/sangue , Estresse Oxidativo , Carbonilação Proteica , Tirosina/análogos & derivados , Idoso , Transtorno Bipolar/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tirosina/sangueRESUMO
Mitochondrial dysfunction and activation of the inflammatory system are two of the most consistently reported findings in bipolar disorder (BD). More specifically, altered levels of inflammatory cytokines and decreased levels of mitochondrial complex I subunits have been found in the brain and periphery of patients with BD, which could lead to increased production of mitochondrial reactive oxygen species (ROS). Recent studies have shown that mitochondrial production of ROS and inflammation may be closely linked through a redox sensor known as nod-like receptor pyrin domain-containing 3 (NLRP3). Upon sensing mitochondrial release of ROS, NLRP3 assembles the NLRP3 inflammasome, which releases caspase 1 to begin the inflammatory cascade. In this review, we discuss the potential role of the NLRP3 inflammasome as a link between complex I dysfunction and inflammation in BD and its therapeutic implications.
Assuntos
Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Transtorno Bipolar/etiologia , Transtorno Bipolar/imunologia , Humanos , Inflamassomos/metabolismo , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Doenças Mitocondriais/complicações , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Espécies Reativas de OxigênioRESUMO
BACKGROUND: Increased oxidative stress is strongly implicated in bipolar disorder (BD), where protein oxidation, lipid peroxidation and oxidative damage to DNA have been consistently reported. High levels of dopamine (DA) in mania are also well-recognized in patients with BD, and DA produces reactive oxygen species and electron-deficient quinones that can oxidize proteins when it is metabolized. METHODS: Using immunohistochemistry and acceptor photobleaching Förster resonance energy transfer (FRET), we examined oxidation and nitration of areas immunoreactive for the DA transporter (DAT) and tyrosine hydroxylase (TH) in the postmortem prefrontal cortex from patients with BD, schizophrenia and major depression as well as nonpsychiatric controls. RESULTS: We found increased oxidation of DAT-immunoreactive regions in patients with BD (F3,48 = 6.76, p = 0.001; Dunnett post hoc test p = 0.001) and decreased nitration of TH-immunoreactive regions in both patients with BD (F3,45 = 3.10, p = 0.036; Dunnett post hoc test p = 0.011) and schizophrenia (p = 0.027). On the other hand, we found increased global levels of oxidation in patients with BD (F3,44 = 6.74, p = 0.001; Dunnett post hoc test p = 0.001) and schizophrenia (p = 0.020), although nitration levels did not differ between the groups (F3,46 = 1.75; p = 0.17). LIMITATIONS: Limitations of this study include the use of postmortem brain sections, which may have been affected by factors such as postmortem interval and antemortem agonal states, although demographic factors and postmortem interval were accounted for in our statistical analysis. CONCLUSION: These findings suggest alterations in levels of protein oxidation and nitration in DA-rich regions of the prefrontal cortex in patients with BD and schizophrenia, but more markedly in those with BD.
Assuntos
Transtorno Bipolar/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Transtorno Depressivo Maior/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , OxirreduçãoRESUMO
Bipolar disorder (BD) is a chronic psychiatric illness of which the etiology remains unknown. Extensive research has provided some hypotheses for the pathophysiology of this disorder; however, there are no molecular tests available to help support the diagnosis obtained by self-report and behavioral observations. A major requirement is to identify potential biomarkers that could be used for early diagnosis in patients susceptible to the disease and for its treatment. The most recently published findings regarding alterations in BD were found to be related to oxidative stress, inflammatory and trophic factor deregulation, and also polymorphisms of genes that are associated with the development of BD. Many of these targets are potential biomarkers which could help to identify the BD subgroups and to advance treatment strategies, which would beneficiate the quality of life of these patients. Therefore, the main objective of this review is to examine the recent findings and critically evaluate their potential as biomarkers for BD.
Assuntos
Biomarcadores , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Transtorno Bipolar/imunologia , Transtorno Bipolar/metabolismo , HumanosRESUMO
Inflammation is a vital mechanism that defends the organism against infections and restores homeostasis. However, when inflammation becomes uncontrolled, it leads to chronic inflammation. The NLRP3 inflammasome is crucial in chronic inflammatory responses and has become a focal point in research for new anti-inflammatory therapies. Flavonoids like catechin, apigenin, and epicatechin are known for their bioactive properties (antioxidant, anti-inflammatory, etc.), but the mechanisms behind their anti-inflammatory actions remain unclear. This study aimed to explore the ability of various flavonoids (isolated and combined) to modulate the NLRP3 inflammasome using in silico and in vitro models. Computer simulations, such as molecular docking, molecular dynamics, and MM/GBSA calculations examined the interactions between bioactive molecules and NLRP3 PYD. THP1 cells were treated with LPS + nigericin to activate NLRP3, followed by flavonoid treatment at different concentrations. THP1-derived macrophages were also treated following NLRP3 activation protocols. The assays included colorimetric, fluorometric, microscopic, and molecular techniques. The results showed that catechin, apigenin, and epicatechin had high binding affinity to NLRP3 PYD, similar to the known NLRP3 inhibitor MCC950. These flavonoids, particularly at 1 µg/mL, 0.1 µg/mL, and 0.01 µg/mL, respectively, significantly reduced LPS + nigericin effects in both cell types and decreased pro-inflammatory cytokine, caspase-1, and NLRP3 gene expression, suggesting their potential as anti-inflammatory agents through NLRP3 modulation.
RESUMO
Mitochondrial Complex I dysfunction and oxidative stress have been part of the pathophysiology of several diseases ranging from mitochondrial disease to chronic diseases such as diabetes, mood disorders and Parkinson's Disease. Nonetheless, to investigate the potential of mitochondria-targeted therapeutic strategies for these conditions, there is a need further our understanding on how cells respond and adapt in the presence of Complex I dysfunction. In this study, we used low doses of rotenone, a classical inhibitor of mitochondrial complex I, to mimic peripheral mitochondrial dysfunction in THP-1 cells, a human monocytic cell line, and explored the effects of N-acetylcysteine on preventing this rotenone-induced mitochondrial dysfunction. Our results show that in THP-1 cells, rotenone exposure led to increases in mitochondrial superoxide, levels of cell-free mitochondrial DNA, and protein levels of the NDUFS7 subunit. N-acetylcysteine (NAC) pre-treatment ameliorated the rotenone-induced increase of cell-free mitochondrial DNA and NDUFS7 protein levels, but not mitochondrial superoxide. Furthermore, rotenone exposure did not affect protein levels of the NDUFV1 subunit but induced NDUFV1 glutathionylation. In summary, NAC may help to mitigate the effects of rotenone on Complex I and preserve the normal function of mitochondria in THP-1 cells.
Assuntos
Acetilcisteína , Rotenona , Humanos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Rotenona/toxicidade , Células THP-1 , Superóxidos/metabolismo , Estresse Oxidativo , Complexo I de Transporte de Elétrons/metabolismo , DNA Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: There is evidence of alterations in mitochondrial energy metabolism and cerebral blood flow (CBF) in adults and youth with bipolar disorder (BD). Brain thermoregulation is based on the balance of heat-producing metabolism and heat-dissipating mechanisms, including CBF. OBJECTIVE: To examine brain temperature, and its relation to CBF, in relation to BD and mood symptom severity in youth. METHODS: This study included 25 youth participants (age 17.4 ± 1.7 years; 13 BD, 12 control group (CG)). Magnetic resonance spectroscopy data were acquired to obtain brain temperature in the left anterior cingulate cortex (ACC) and the left precuneus. Regional estimates of CBF were provided by arterial spin labeling imaging. Analyses used general linear regression models, covarying for age, sex, and psychiatric medications. RESULTS: Brain temperature was significantly higher in BD compared to CG in the precuneus. A higher ratio of brain temperature to CBF was significantly associated with greater depression symptom severity in both the ACC and precuneus within BD. Analyses examining the relationship of brain temperature or CBF with depression severity score did not reveal any significant finding in the ACC or the precuneus. CONCLUSION: The current study provides preliminary evidence of increased brain temperature in youth with BD, in whom reduced thermoregulatory capacity is putatively associated with depression symptom severity. Evaluation of brain temperature and CBF in conjunction may provide valuable insight beyond what can be gleaned by either metric alone. Larger prospective studies are warranted to further evaluate brain temperature and its association with CBF concerning BD.
Assuntos
Transtorno Bipolar , Adulto , Humanos , Adolescente , Adulto Jovem , Transtorno Bipolar/diagnóstico , Temperatura , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologiaRESUMO
BACKGROUND: Mitochondrial dysfunction is involved in several diseases ranging from genetic mitochondrial disorders to chronic metabolic diseases. An emerging approach to potentially treat mitochondrial dysfunction is the transplantation of autologous live mitochondria to promote cell regeneration. We tested the differential filtration-based mitochondrial isolation protocol established by the McCully laboratory for use in cellular models but found whole cell contaminants in the mitochondrial isolate. METHODS: Therefore, we explored alternative types of 5-µm filters (filters A and B) for isolation of mitochondria from multiple cell lines including HEK293 cells and induced pluripotent stem cells (iPSCs). MitoTracker™ staining combined with flow cytometry was used to quantify the concentration of viable mitochondria. A proof-of-principle mitochondrial transplant was performed using mitoDsRed2-tagged mitochondria into a H9-derived cerebral organoid. RESULTS: We found that filter B provided the highest quality mitochondria as compared to the 5-µm filter used in the original protocol. Using this method, mitochondria were also successfully isolated from induced pluripotent stem cells. To test for viability, mitoDsRed2-tagged mitochondria were isolated and transplanted into H9-derived cerebral organoids and observed that mitochondria were engulfed as indicated by immunofluorescent co-localization of TOMM20 and MAP2. CONCLUSIONS: Thus, use of filter B in a differential filtration approach is ideal for isolating pure and viable mitochondria from cells, allowing us to begin evaluating long-term integration and safety of mitochondrial transplant using cellular sources.
Assuntos
Células-Tronco Pluripotentes Induzidas , Mitocôndrias , Humanos , Células HEK293 , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismoRESUMO
Diabetes mellitus is a disease associated with several changes in the central nervous system, including oxidative stress and abnormal glutamatergic neurotransmission, and the astrocytes play an essential role in these alterations. In vitro studies of astroglial function have been performed using cultures of primary astrocytes or C6 glioma cells. Herein, we investigated glutamate uptake, glutamine synthetase and S100B secretion in C6 glioma cells cultured in a high-glucose environment, as well as some parameters of oxidative stress and damage. C6 glioma cells, cultured in 12 mM glucose medium, exhibited signals of oxidative and nitrosative stress similar to those found in diabetes mellitus and other models of diabetic disease (decrease in glutathione, elevated NO, DNA damage). Interestingly, we found an increase in glutamate uptake and S100B secretion, and a decrease in glutamine synthetase, which might be linked to the altered glutamatergic communication in diabetes mellitus. Moreover, glutamate uptake in C6 glioma cells, like primary astrocytes, was stimulated by extracellular S100B. Aminoguanidine partially prevented the glial alterations induced by the 12 mM glucose medium. Together, these data emphasize the relevance of astroglia in diabetes mellitus, as well as the importance of glial parameters in the evaluation of diabetic disease progression and treatment.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glucose/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Acetilcisteína/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Linhagem da Célula , Meios de Cultura , Dano ao DNA , Glioma/patologia , Guanidinas/farmacologia , Humanos , Subunidade beta da Proteína Ligante de Cálcio S100RESUMO
Mitochondrial diseases are one of the largest groups of neurological genetic disorders. Despite continuous efforts of the scientific community, no cure has been developed, and most treatment strategies rely on managing the symptoms. After the success of coronavirus disease 2019 (COVID-19) mRNA vaccines and accelerated US Food and Drug Administration (FDA) approval of four new RNAi drugs, we sought to investigate the potential of mitochondrion-targeting RNA-based therapeutic agents for treatment of mitochondrial diseases. Here we describe the causes and existing therapies for mitochondrial diseases. We then detail potential RNA-based therapeutic strategies for treatment of mitochondrial diseases, including use of antisense oligonucleotides (ASOs) and RNAi drugs, allotopic therapies, and RNA-based antigenomic therapies that aim to decrease the level of deleterious heteroplasmy in affected tissues. Finally, we review different mechanisms by which RNA-based therapeutic agents can be delivered to the mitochondrial matrix, including mitochondrion-targeted nanocarriers and endogenous mitochondrial RNA import pathways.
RESUMO
OBJECTIVES: Recognizing bipolar disorder as a multi-system metabolic condition driven, in part, by binge eating behavior and atypical depressive symptoms, this study aimed to quantify diet quality and evaluate clinical correlates in a bipolar disorder cohort. METHODS: Participants from the Mayo Clinic Bipolar Disorder Biobank (n = 734) completed the Rapid Eating Assessment for Participants - Shortened version (REAP-S) to determine diet quality. The average REAP-S score for a U.S. omnivorous diet is 32 (range 13 to 39) with higher scores indicating healthier diet. Demographic variables were collected in a standardized clinical questionnaire. Depressive symptoms were assessed by the Bipolar Inventory of Symptoms Scale. Cardiometabolic variables were retrieved from the electronic health record. Associations between continuous variables and REAP-S scores (total, 'healthy foods' and 'avoidance of unhealthy foods') were assessed using linear regression. RESULTS: Overall, our sample had a mean REAP-S score of 27.6 (4.9), suggestive of a lower diet quality than the average general population in the US. There was a significant inverse relationship between mean REAP-S lower scores with increased BMI, waist circumference, disordered eating and depression. All these associations were significantly stronger in female participants. LIMITATIONS: EHR cross-sectional data. CONCLUSIONS: Our data suggest unhealthy diet quality in bipolar disorder is associated with depression, obesity and cardiometabolic abnormalities. Additional work is encouraged to prospectively track mood and diet quality to further understand the bidirectional relationship and clarify if dietary interventions can positively impact mood. Further delineating potential sex differences in diet quality and depression may provide greater appreciation of modifiable risk factors for future cardiometabolic burden.
Assuntos
Transtorno Bipolar , Doenças Cardiovasculares , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/epidemiologia , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Depressão/diagnóstico , Depressão/epidemiologia , Dieta , Feminino , Humanos , Masculino , Estudos ProspectivosRESUMO
Despite extensive research in the last decades, the pathophysiology of bipolar disorder (BD) remains unclear. Access to post-mortem brain tissue of subjects who had BD offers an opportunity to investigate neurobiology and this approach has led to some progress, particularly, due to the availability of more sophisticated molecular and cellular biological methodologies and well characterized brain collections over the past decade. Here we review the findings of morphometric post-mortem studies in BD and interpret them in the context of a potential physiopathological mechanism involving oxidative stress and apoptosis. A review of the literature was conducted to identify post-mortem studies that investigated cellular changes such as number, density and size of neurons and glia, in brains of subjects with BD. We found decreased density of neurons and glia and decreased size of neurons in frontal and subcortical areas of the brain. Based on recent studies that found evidence of increased apoptosis and oxidative stress in BD, we hypothesize that the cell abnormalities described are due to an increase in the apoptotic process that can be triggered, through its intrinsic pathway, by the existence of an exacerbated production of reactive oxygen species and oxidative damage in the disease.
Assuntos
Apoptose/fisiologia , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Estresse Oxidativo/fisiologia , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologiaRESUMO
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Assuntos
Antidepressivos , Transtornos Mentais , Antidepressivos/efeitos adversos , Humanos , Transtornos Mentais/tratamento farmacológico , MitocôndriasRESUMO
Neurological disorders have been demonstrated to be associated with mitochondrial dysfunction. This impairment may lead to oxidative stress and neuroinflammation, specifically promoted by NLRP3 expression. Açaí (Euterpe oleracea Mart.) has been studied in this field, since it presents important biological activities. We investigated açaí extract's anti-neuroinflammatory capacity, through NLRP3 inflammasome modulation. Microglia (EOC 13.31) were exposed to LPS and nigericin, as agents of inflammatory induction, and treated with açaí extract. Additionally, we used lithium (Li) as an anti-inflammatory control. Three different experiment models were conducted: (1) isolated NLRP3 priming and activation signals; (2) combined NLRP3 priming and activation signals followed by açaí extract as a therapeutic agent; and (3) combined NLRP3 priming and activation signals with açaí extract as a preventive agent. Cells exposed to 0.1 µg/mL of LPS presented high proliferation and increased levels of NO, and ROS, while 0.1 µg/mL of açaí extract was capable to reduce cellular proliferation and recover levels of NO and ROS. Primed and activated cells presented increased levels of NLRP3, caspase-1, and IL-1ß, while açaí, Li, and orientin treatments reversed this impairment. We found that açaí, Li, and orientin were effective prophylactic treatments. Preventative treatment with Li and orientin was unable to avoid overexpression of IL-1ß compared to the positive control. However, orientin downregulated NLRP3 and caspase-1. Lastly, primed and activated cells impaired ATP production, which was prevented by pre-treatment with açaí, Li, and orientin. In conclusion, we suggest that açaí could be a potential agent to treat or prevent neuropsychiatric diseases related to neuroinflammation.