RESUMO
The distribution of brain aerobic glycolysis (AG) in normal young adults correlates spatially with amyloid-beta (Aß) deposition in individuals with symptomatic and preclinical Alzheimer disease (AD). Brain AG decreases with age, but the functional significance of this decrease with regard to the development of AD symptomatology is poorly understood. Using PET measurements of regional blood flow, oxygen consumption, and glucose utilization-from which we derive AG-we find that cognitive impairment is strongly associated with loss of the typical youthful pattern of AG. In contrast, amyloid positivity without cognitive impairment was associated with preservation of youthful brain AG, which was even higher than that seen in cognitively unimpaired, amyloid negative adults. Similar findings were not seen for blood flow nor oxygen consumption. Finally, in cognitively unimpaired adults, white matter hyperintensity burden was found to be specifically associated with decreased youthful brain AG. Our results suggest that AG may have a role in the resilience and/or response to early stages of amyloid pathology and that age-related white matter disease may impair this process.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adulto Jovem , Humanos , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Amiloide/metabolismo , Proteínas Amiloidogênicas , GlicóliseRESUMO
White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.
Assuntos
Leucoaraiose , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , EnvelhecimentoRESUMO
With over 50 years of electroporation research, the nature of cell membrane permeabilization remains elusive. The lifetime of electropores in molecular models is limited to nano- or microseconds, whereas the permeabilization of electroporated cells can last minutes. This study aimed at resolving a longstanding debate on whether the prolonged permeabilization is due to the formation of long-lived pores in cells. We developed a method for dynamic monitoring and conductance measurements of individual electropores. This was accomplished by time-lapse total internal reflection fluorescence (TIRF) imaging in HEK cells loaded with CAL-520 dye and placed on an indium tin oxide (ITO) surface. Applying a 1-ms, 0 to -400 mV pulse between the patch pipette and ITO evoked focal Ca2+ transients that identified individual electropores. Some transients disappeared in milliseconds but others persisted for over a minute. Persistent transients ("Ca2+ plumes") faded over time to a stable or a randomly fluctuating level that could include periods of full quiescence. Single pore conductance, measured by 0 to -50 mV, 50 ms steps at 30 and 60 s after the electroporation, ranged from 80 to 200 pS. These experiments proved electropore longevity in cells, in stark contrast to molecular simulations and many findings in lipid bilayers.
Assuntos
Bicamadas Lipídicas , Longevidade , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Eletroporação/métodos , Divisão CelularRESUMO
PURPOSE: This study evaluates the potential of within-individual Metabolic Connectivity (wi-MC), from dynamic [18F]FDG PET data, based on the Euclidean Similarity method. This approach leverages the biological information of the tracer's full temporal dynamics, enabling the direct extraction of individual metabolic connectomes. Specifically, the proposed framework, applied to glioma pathology, seeks to assess sensitivity to metabolic dysfunctions in the whole brain, while simultaneously providing further insights into the pathophysiological mechanisms regulating glioma progression. METHODS: We designed an index (Distance from Healthy Group, DfHG) based on the alteration of wi-MC in each patient (n = 44) compared to a healthy reference (from 57 healthy controls), to individually quantify metabolic connectivity abnormalities, resulting in an Impairment Map highlighting significantly compromised areas. We then assessed whether our measure of metabolic network alteration is associated with well-established markers of disease severity (tumor grade and volume, with and without edema). Subsequently, we investigated disruptions in wi-MC homotopic connectivity, assessing both affected and seemingly healthy tissue to deepen the pathology's impact on neural communication. Finally, we compared network impairments with local metabolic alterations determined from SUVR, a validated diagnostic tool in clinical practice. RESULTS: Our framework revealed how gliomas cause extensive alterations in the topography of brain networks, even in structurally unaffected regions outside the lesion area, with a significant reduction in connectivity between contralateral homologous regions. High-grade gliomas have a stronger impact on brain networks, and edema plays a mediating role in global metabolic alterations. As compared to the conventional SUVR-based analysis, our approach offers a more holistic view of the disease burden in individual patients, providing interesting additional insights into glioma-related alterations. CONCLUSION: Considering our results, individual PET connectivity estimates could hold significant clinical value, potentially allowing the identification of new prognostic factors and personalized treatment in gliomas or other focal pathologies.
RESUMO
Herein we report the three-component copper-catalyzed carboiminolactonization of α,ß-unsaturated carbonyl derivatives. In the presence of a Cu(I) catalyst, α-haloesters, electron-deficient alkenes, and primary amines couple to generate γ-iminolactones in a single step. The scope of the reaction is explored with respect to the three coupling partners. Nineteen examples are presented with yields of these hydrolytically labile heterocycles of up to 69%. Mechanistic investigations support the formation of an oxocarbenium by way of an atom transfer radical addition (ATRA) intermediate.
RESUMO
To capture weak light fluxes, green photosynthetic bacteria have unique structures - chlorosomes, consisting of 104-5 molecules of bacteriochlorophyll (BChl) c, d, e. Chlorosomes are attached to the cytoplasmic membrane through the baseplate, a paracrystalline protein structure containing BChl a and carotenoids (Car). The most important function of Car is the quenching of triplet states of BChl, which prevents the formation of singlet oxygen and thereby provides photoprotection. In our work, we studied the dynamics of the triplet states of BChl a and Car in the baseplate of Chloroflexus aurantiacus chlorosomes using picosecond differential spectroscopy. BChl a of the baseplate was excited into the Qy band at 810 nm, and the corresponding absorption changes were recorded in the range of 420-880 nm. It was found that the formation of the Car triplet state occurs in â¼1.3 ns, which is â¼3 times faster than the formation of this state in the peripheral antenna of C. aurantiacus according to literature data. The Car triplet state was recorded by the characteristic absorption band T1 â Tn at â¼550 nm. Simultaneously with the appearance of absorption T1 â Tn, there was a bleaching of the singlet absorption of Car in the region of 400-500 nm. Theoretical modeling made it possible to estimate the characteristic time of formation of the triplet state of BChl a as â¼0.5 ns. It is shown that the experimental data are well described by the sequential scheme of formation and quenching of the BChl a triplet state: BChl a* â BChl aT â CarT. Thus, carotenoids from green bacteria effectively protect the baseplate from possible damage by singlet oxygen.
Assuntos
Bacterioclorofila A , Carotenoides , Chloroflexus , Carotenoides/metabolismo , Oxigênio Singlete , Bactérias/metabolismo , Proteínas de Bactérias/química , Bacterioclorofilas/químicaRESUMO
Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.
Assuntos
Antozoários , Diterpenos , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Animais , Antozoários/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/isolamento & purificação , Região do Caribe , Estrutura Molecular , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/isolamento & purificaçãoRESUMO
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Exited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity - starting with a modular synthesis of photoprecursors from readily available building blocks - is quantified by Böttcher score calculations.
RESUMO
This study explored the role of the Na/K-ATPase (NKA) in membrane permeabilization induced by nanosecond electric pulses. Using CRISPR/Cas9 and shRNA, we silenced the ATP1A1 gene, which encodes α1 NKA subunit in U937 human monocytes. Silencing reduced the rate and the cumulative uptake of YoPro-1 dye after electroporation by 300-ns, 7-10 kV/cm pulses, while ouabain, a specific NKA inhibitor, enhanced YoPro-1 entry. We conclude that the α1 subunit supports the electropermeabilized membrane state, by forming or stabilizing electropores or by hindering repair mechanisms, and this role is independent of NKA's ion pump function.
Assuntos
Eletricidade , Eletroporação , Humanos , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , RNA Interferente Pequeno/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
BACKGROUND AIMS: In-process monitoring and control of biomanufacturing workflows remains a significant challenge in the development, production, and application of cell therapies. New process analytical technologies must be developed to identify and control the critical process parameters that govern ex vivo cell growth and differentiation to ensure consistent and predictable safety, efficacy, and potency of clinical products. METHODS: This study demonstrates a new platform for at-line intracellular analysis of T-cells. Untargeted mass spectrometry analyses via the platform are correlated to conventional methods of T-cell assessment. RESULTS: Spectral markers and metabolic pathways correlated with T-cell activation and differentiation are detected at early time points via rapid, label-free metabolic measurements from a minimal number of cells as enabled by the platform. This is achieved while reducing the analytical time and resources as compared to conventional methods of T-cell assessment. CONCLUSIONS: In addition to opportunities for fundamental insight into the dynamics of T-cell processes, this work highlights the potential of in-process monitoring and dynamic feedback control strategies via metabolic modulation to drive T-cell activation, proliferation, and differentiation throughout biomanufacturing.
Assuntos
Redes e Vias Metabólicas , Linfócitos T , Espectrometria de Massas , Diferenciação Celular , Proliferação de CélulasRESUMO
We investigate the turn-on process in a laser cavity where the round-trip time is several orders of magnitude greater than the active medium timescales. In this long delay limit, we show that the universal evolution of the photon statistics from thermal to Poissonian distribution involves the emergence of power dropouts. While the largest number of these dropouts vanish after a few round-trips, some of them persist and seed coherent structures similar to dark solitons or Nozaki-Bekki holes described by the complex Ginzburg-Landau equation. These coherent structures connect stationary laser emission domains having different optical frequencies. Moreover, they emit intensity bursts which travel at a different speed, and, depending on the cavity dispersion sign, they may collide with other coherent structures, thus leading to an overall turbulent dynamics. The dynamics is well-modeled by delay differential equations from which we compute the laser coherence time evolution at each round-trip and quantify the decoherence induced by the collisions between coherent structures.
RESUMO
Cynanchum viminale subsp. australe, more commonly known as caustic vine, is a leafless succulent that grows in the northern arid zone of Australia. Toxicity toward livestock has been reported for this species, along with use in traditional medicine and its potential anticancer activity. Disclosed herein are novel seco-pregnane aglycones cynavimigenin A (5) and cynaviminoside A (6), together with new pregnane glycosides cynaviminoside B (7) and cynavimigenin B (8). Cynavimigenin B (8) contains an unprecedented 7-oxobicyclo[2.2.1]heptane moiety in the seco-pregnane series, likely arising from a pinacol-type rearrangement. Interestingly, these isolates displayed only limited cytotoxicity in cancer and normal human cell lines, in addition to low activity against acetylcholinesterase and Sarcoptes scabiei bioassays, suggesting that 5-8 are not associated with the reported toxicity of this plant species.
Assuntos
Cáusticos , Cynanchum , Humanos , Acetilcolinesterase , Austrália , Glicosídeos/farmacologia , Pregnanos/farmacologia , Raízes de PlantasRESUMO
Process of photosynthesis in the green bacteria Chloroflexus (Cfx.) aurantiacus starts from absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, the excited states are formed in BChl c, energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by non-radiative electronic transitions between the numerous exciton states, that is, exciton relaxation. In this work, we studied dynamics of the exciton relaxation in Cfx. aurantiacus chlorosomes using differential femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20-fs light pulses at wavelengths in the range from 660 to 750 nm, and differential (light-dark) absorption kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the obtained data revealed kinetic components with characteristic times of 140, 220, and 320 fs, which are responsible for exciton relaxation. As the excitation wavelength decreased, the number and relative contribution of these components increased. Theoretical modelling of the obtained data was carried out based of the cylindrical model of BChl c. Nonradiative transitions between the groups of exciton bands were described by a system of kinetic equations. The model that takes into account energy and structural disorder of chlorosomes turned out to be the most adequate.
Assuntos
Chloroflexus , Chloroflexus/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Análise Espectral , Bacterioclorofilas/química , FotossínteseRESUMO
In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes - unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfx. aurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.
Assuntos
Bacterioclorofilas , Chloroflexus , Bacterioclorofilas/química , Proteínas de Bactérias/química , Análise Espectral , Bactérias , LuzRESUMO
The photoluminescence (PL) of monolayer tungsten disulfide (WS2) is locally and electrically controlled using the nonplasmonic tip and tunneling current of a scanning tunneling microscope (STM). The spatial and spectral distribution of the emitted light is determined using an optical microscope. When the STM tip is engaged, short-range PL quenching due to near-field electromagnetic effects is present, independent of the sign and value of the bias voltage applied to the tip-sample tunneling junction. In addition, a bias-voltage-dependent long-range PL quenching is measured when the sample is positively biased. We explain these observations by considering the native n-doping of monolayer WS2 and the charge carrier density gradients induced by electron tunneling in micrometer-scale areas around the tip position. The combination of wide-field PL microscopy and charge carrier injection using an STM opens up new ways to explore the interplay between excitons and charge carriers in two-dimensional semiconductors.
RESUMO
The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in YP uptake. The respective proteins could be part of electropermeabilization lesions or increase their lifespan. In contrast, as many as 39 genes were identified as likely hits for the increased YP uptake, meaning that the respective proteins contributed to membrane stability or repair after nsEP. The expression level of eight genes in different types of human cells showed strong correlation (R > 0.9, p < 0.02) with their LD50 for lethal nsEP treatments, and could potentially be used as a criterion for the selectivity and efficiency of hyperplasia ablations with nsEP.
Assuntos
Eletricidade , Eletroporação , Cricetinae , Animais , Humanos , Cricetulus , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Transporte BiológicoRESUMO
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as "bipolar cancellation," enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing the electric field in the pairs (180° direction change) caused 2-fold (1 Hz) or 20-fold (833 kHz) weaker electroporation than the train of single nsEPs. Reducing the angle between pulse directions in the pairs weakened cancellation and replaced it with facilitation at angles <160° (1 Hz) and <130° (833 kHz). Facilitation plateaued at about three-fold stronger electroporation compared to single pulses at 90-100° angle for both nsEP frequencies. The profound dependence of the efficiency on the angle enables novel protocols for highly selective focal electroporation at one electrode in a three-electrode array while avoiding effects at the other electrodes. Nanosecond-resolution imaging of cell membrane potential was used to link the selectivity to charging kinetics by co- and counter-directional nsEPs.
Assuntos
Eletroporação , Células Endoteliais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Eletroporação/métodos , Terapia com EletroporaçãoRESUMO
Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns-10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15-20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30-40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them less vulnerable to electroporation. We infer that damage to SMC from nsPEF ablation of esophageal malignancies can be minimized by applying the electric field parallel to the predominant SMC orientation.
Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Eletricidade , Potenciais da Membrana , Eletroporação , Músculo Liso , Neoplasias Esofágicas/terapiaRESUMO
The methylation of cytosines at CpG sites in DNA, carried out de novo by DNA methyltransferase Dnmt3a, is a basic epigenetic modification involved in gene regulation and genome stability. Aberrant CpG methylation in gene promoters leads to oncogenesis. In oncogene promoters, CpG sites often colocalize with guanine-rich sequences capable of folding into G-quadruplexes (G4s). Our in vitro study aimed to investigate how parallel G4s formed by a sequence derived from the c-MYC oncogene promoter region affect the activity of the Dnmt3a catalytic domain (Dnmt3a-CD). For this purpose, we designed synthetic oligonucleotide constructs: a c-MYC G4-forming oligonucleotide and linear double-stranded DNA containing an embedded stable extrahelical c-MYC G4. The topology and thermal stability of G4 structures in these DNA models were analyzed using physicochemical techniques. We showed that Dnmt3a-CD specifically binds to an oligonucleotide containing c-MYC G4, resulting in inhibition of its methylation activity. c-MYC G4 formation in a double-stranded context significantly reduces Dnmt3a-CD-induced methylation of a CpG site located in close proximity to the quadruplex structure; this effect depends on the distance between the non-canonical structure and the specific CpG site. One would expect DNA hypomethylation near the G4 structure, while regions distant from this non-canonical form would maintain a regular pattern of high methylation levels. We hypothesize that the G4 structure sequesters the Dnmt3a-CD and impedes its proper binding to B-DNA, resulting in hypomethylation and activation of c-MYC transcription.
Assuntos
DNA de Forma B , Quadruplex G , Genes myc , Metilases de Modificação do DNA , Oncogenes , Oligonucleotídeos , Regiões Promotoras Genéticas , MetilaçãoRESUMO
Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is more recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic o-keto amines and amides, leading to diverse primary photoproducts-complex quinolinols or azacanes possessing a fused lactam moiety-which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) To explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions; (ii) To assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.