Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Genet Metab ; 139(4): 107651, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473537

RESUMO

Mucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model. We demonstrate that Idua-W392X mice have gross craniofacial abnormalities, showed signs of kyphosis, and show signs of hypoactivity compared to wild-type mice. X-ray imaging analysis revealed significantly shorter and wider tibias and femurs, significantly wider snouts, increased skull width and significantly thicker zygomatic arch bones in Idua-W392X female mice compared to wild-type mice at 9 and 10.5 months of age. Idua-W392X mice display decreased muscle strength, especially in the forelimbs, which is already apparent from 3 months of age. Female Idua-W392X mice display hypoactivity in the open-field test from 9 months of age and anxiety-like behaviour at 10 months of age. As these behaviours have been identified in Hurler children, the MPSI Idua-W392X mouse model may be important for the investigation of new therapeutic approaches for MPSI-Hurler.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose I , Criança , Camundongos , Feminino , Humanos , Animais , Mucopolissacaridose I/terapia , Iduronidase/genética , Iduronidase/uso terapêutico , Fenótipo , Ansiedade
2.
Proc Natl Acad Sci U S A ; 115(7): E1540-E1549, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386395

RESUMO

Inhibition of immune checkpoints programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) on T cells results in durable antitumor activity in melanoma patients. Despite high frequency of melanoma brain metastases (BrM) and associated poor prognosis, the activity and mechanisms of immune checkpoint inhibitors (ICI) in metastatic tumors that develop within the "immune specialized" brain microenvironment, remain elusive. We established a melanoma tumor transplantation model with intracranial plus extracranial (subcutaneous) tumor, mimicking the clinically observed coexistence of metastases inside and outside the brain. Strikingly, intracranial ICI efficacy was observed only when extracranial tumor was present. Extracranial tumor was also required for ICI-induced increase in CD8+ T cells, macrophages, and microglia in brain tumors, and for up-regulation of immune-regulatory genes. Combined PD-1/CTLA-4 blockade had a superior intracranial efficacy over the two monotherapies. Cell depletion studies revealed that NK cells and CD8+ T cells were required for intracranial anti-PD-1/anti-CTLA-4 efficacy. Rather than enhancing CD8+ T cell activation and expansion within intracranial tumors, PD-1/CTLA-4 blockade dramatically (∼14-fold) increased the trafficking of CD8+ T cells to the brain. This was mainly through the peripheral expansion of homing-competent effector CD8+ T cells and potentially further enhanced through up-regulation of T cell entry receptors intercellular adhesion molecule 1 and vascular adhesion molecule 1 on tumor vasculature. Our study indicates that extracranial activation/release of CD8+ T cells from PD-1/CTLA-4 inhibition and potentiation of their recruitment to the brain are paramount to the intracranial anti-PD-1/anti-CTLA-4 activity, suggesting augmentation of these processes as an immune therapy-enhancing strategy in metastatic brain cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Feminino , Granzimas/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/secundário , Neoplasias Cutâneas/terapia , Carga Tumoral , Células Tumorais Cultivadas
3.
Biochem J ; 456(2): 297-309, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24015703

RESUMO

The majority of the polytopic proteins that are synthesized at the ER (endoplasmic reticulum) are integrated co-translationally via the Sec61 translocon, which provides lateral access for their hydrophobic TMs (transmembrane regions) to the phospholipid bilayer. A prolonged association between TMs of the potassium channel subunit, TASK-1 [TWIK (tandem-pore weak inwardly rectifying potassium channel)-related acid-sensitive potassium channel 1], and the Sec61 complex suggests that the ER translocon co-ordinates the folding/assembly of the TMs present in the nascent chain. The N-terminus of both TASK-1 and Kcv (potassium channel protein of chlorella virus), another potassium channel subunit of viral origin, has access to the N-glycosylation machinery located in the ER lumen, indicating that the Sec61 complex can accommodate multiple arrangements/orientations of TMs within the nascent chain, both in vitro and in vivo. Hence the ER translocon can provide the ribosome-bound nascent chain with a dynamic environment in which it can explore a range of different conformations en route to its correct transmembrane topology and final native structure.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Canais de Translocação SEC
4.
Front Oncol ; 13: 1191980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456245

RESUMO

Exit of quiescent disseminated cancer cells from dormancy is thought to be responsible for metastatic relapse and a better understanding of dormancy could pave the way for novel therapeutic approaches. We used an in vivo model of triple negative breast cancer brain metastasis to identify differences in transcriptional profiles between dormant and proliferating cancer cells in the brain. BGN gene, encoding a small proteoglycan biglycan, was strongly upregulated in dormant cancer cells in vivo. BGN expression was significantly downregulated in patient brain metastases as compared to the matched primary breast tumors and BGN overexpression in cancer cells inhibited their growth in vitro and in vivo. Dormant cancer cells were further characterized by a reduced expression of glycolysis genes in vivo, and inhibition of glycolysis in vitro resulted in a reversible growth arrest reminiscent of dormancy. Our study identified mechanisms that could be targeted to induce/maintain cancer dormancy and thereby prevent metastatic relapse.

5.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33707311

RESUMO

Patients with glioblastoma (GBM) have a poor prognosis, and inefficient delivery of drugs to tumors represents a major therapeutic hurdle. Hematopoietic stem cell (HSC)-derived myeloid cells efficiently home to GBM and constitute up to 50% of intratumoral cells, making them highly appropriate therapeutic delivery vehicles. Because myeloid cells are ubiquitously present in the body, we recently established a lentiviral vector containing matrix metalloproteinase 14 (MMP14) promoter, which is active specifically in tumor-infiltrating myeloid cells as opposed to myeloid cells in other tissues, and resulted in a specific delivery of transgenes to brain metastases in HSC gene therapy. Here, we used this novel approach to target transforming growth factor beta (TGFß) as a key tumor-promoting factor in GBM. Transplantation of HSCs transduced with lentiviral vector expressing green fluorescent protein (GFP) into lethally irradiated recipient mice was followed by intracranial implantation of GBM cells. Tumor-infiltrating HSC progeny was characterized by flow cytometry. In therapy studies, mice were transplanted with HSCs transduced with lentiviral vector expressing soluble TGFß receptor II-Fc fusion protein under MMP14 promoter. This TGFß-blocking therapy was compared with the targeted tumor irradiation, the combination of the two therapies, and control. Tumor growth and survival were quantified (statistical significance determined by t-test and log-rank test). T cell memory response was probed through a repeated tumor challenge. Myeloid cells were the most abundant HSC-derived population infiltrating GBM. TGFß-blocking HSC gene therapy in combination with irradiation significantly reduced tumor burden as compared with monotherapies and the control, and significantly prolonged survival as compared with the control and TGFß-blocking monotherapy. Long-term protection from GBM was achieved only with the combination treatment (25% of the mice) and was accompanied by a significant increase in CD8+ T cells at the tumor implantation site following tumor rechallenge. We demonstrated a preclinical proof-of-principle for tumor myeloid cell-specific HSC gene therapy in GBM. In the clinic, HSC gene therapy is being successfully used in non-cancerous brain disorders and the feasibility of HSC gene therapy in patients with glioma has been demonstrated in the context of bone marrow protection. This indicates an opportunity for clinical translation of our therapeutic approach.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética , Glioblastoma/terapia , Transplante de Células-Tronco Hematopoéticas , Fragmentos Fc das Imunoglobulinas/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Metaloproteinase 14 da Matriz/genética , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Estudo de Prova de Conceito , Radioterapia Adjuvante , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Carga Tumoral
6.
J Natl Cancer Inst ; 112(6): 617-627, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501884

RESUMO

BACKGROUND: Brain metastases (BrM) develop in 20-40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain because of the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems. METHODS: Green fluorescent protein (GFP)-transduced murine and nontransduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene-expression analysis and subsequent validation of a series of promoter-green fluorescent protein-reporter constructs in mice (n = 5). One of the promoters was used to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL vs control group). RESULTS: HSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (mean [SD] = 37.6% [7.2%] of all infiltrating cells for murine HSC progeny; 27.9% mean [SD] = 27.9% [4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3-53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (mean [SD] = 8.8% [7.8%]). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] = 19.0 [3.4] vs mean [SD] = 15.0 [2.0] days for TRAIL vs control group; two-sided P = .006), demonstrating therapeutic and translational potential of our approach. CONCLUSIONS: Our study establishes HSC gene therapy using a myeloid cell-specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/fisiologia , Células Mieloides/fisiologia , Animais , Feminino , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Lentivirus/genética , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/genética
7.
Front Mol Neurosci ; 12: 282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824260

RESUMO

Immune checkpoints restrain the immune system following its activation and their inhibition unleashes anti-tumor immune responses. Immune checkpoint inhibitors revolutionized the treatment of several cancer types, including melanoma, and immune checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies is becoming a frontline therapy in metastatic melanoma. Notably, up to 60% of metastatic melanoma patients develop metastases in the brain. Brain metastases (BrM) are also very common in patients with lung and breast cancer, and occur in ∼20-40% of patients across different cancer types. Metastases in the brain are associated with poor prognosis due to the lack of efficient therapies. In the past, patients with BrM used to be excluded from immune-based clinical trials due to the assumption that such therapies may not work in the context of "immune-specialized" environment in the brain, or may cause harm. However, recent trials in patients with BrM demonstrated safety and intracranial activity of anti-PD-1 and anti-CTLA-4 therapy. We here discuss how immune checkpoint therapy works in BrM, with focus on T cells and the cross-talk between BrM, the immune system, and tumors growing outside the brain. We discuss major open questions in our understanding of what is required for an effective immune checkpoint inhibitor therapy in BrM.

8.
Oncotarget ; 7(27): 41473-41487, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27203741

RESUMO

In contrast to primary tumors, the understanding of macrophages within metastases is very limited. In order to compare macrophage phenotypes between different metastatic sites, we established a pre-clinical mouse model of intracranial breast cancer metastasis in which cancer lesions develop simultaneously within the brain parenchyma and the dura. This mimics a situation that is commonly occurring in the clinic. Flow cytometry analysis revealed significant differences in the activation state of metastasis-associated macrophages (MAMs) at the two locations. Concurrently, gene expression analysis identified significant differences in molecular profiles of cancer cells that have metastasized to the brain parenchyma as compared to the dura. This included differences in inflammation-related pathways, NF-kB1 activity and cytokine profiles. The most significantly upregulated cytokine in brain parenchyma- versus dura-derived cancer cells was Lymphotoxin ß and a gain-of-function approach demonstrated a direct involvement of this factor in the M2 polarization of parenchymal MAMs. This established a link between metastatic site-specific properties of cancer cells and the MAM activation state.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Movimento Celular , Polaridade Celular , Macrófagos/fisiologia , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Encefalite/patologia , Feminino , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Microambiente Tumoral/imunologia
9.
Nat Cell Biol ; 17(6): 782-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961505

RESUMO

The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento , Animais , Animais Geneticamente Modificados , Células COS , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Proliferação de Células , Respiração Celular , Sobrevivência Celular , Chlorocebus aethiops , Cromatina/metabolismo , Células HEK293 , Células HeLa , Humanos , Longevidade , Estresse Oxidativo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Estresse Fisiológico , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA