RESUMO
The number and distribution of recessive alleles in the population for various diseases are not known at genome-wide-scale. Based on 6,447 exome sequences of healthy, genetically unrelated Europeans of two distinct ancestries, we estimate that every individual is a carrier of at least 2 pathogenic variants in currently known autosomal-recessive (AR) genes and that 0.8%-1% of European couples are at risk of having a child affected with a severe AR genetic disorder. This risk is 16.5-fold higher for first cousins but is significantly more increased for skeletal disorders and intellectual disabilities due to their distinct genetic architecture.
Assuntos
Consanguinidade , Características da Família , Genes Recessivos/genética , Variação Genética/genética , Fenótipo , População Branca/genética , Estudos de Coortes , Europa (Continente)/etnologia , Exoma/genética , Feminino , Testes Genéticos , Saúde , Heterozigoto , Humanos , Deficiência Intelectual/genética , MasculinoRESUMO
BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease. METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis. RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R 2 < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05). CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.
Assuntos
Endometriose , Microbioma Gastrointestinal , Humanos , Endometriose/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Adulto , Estudos de Casos e Controles , Estônia/epidemiologia , Estudos de Coortes , Pessoa de Meia-Idade , Metagenômica , Disbiose/microbiologia , Adulto JovemRESUMO
Summary: Designing PCR primers for amplifying regions of eukaryotic genomes is a complicated task because the genomes contain a large number of repeat sequences and other regions unsuitable for amplification by PCR. We have developed a novel k-mer based masking method that uses a statistical model to detect and mask failure-prone regions on the DNA template prior to primer design. We implemented the software as a standalone software primer3_masker and integrated it into the primer design program Primer3. Availability and implementation: The standalone version of primer3_masker is implemented in C. The source code is freely available at https://github.com/bioinfo-ut/primer3_masker/ (standalone version for Linux and macOS) and at https://github.com/primer3-org/primer3/ (integrated version). Primer3 web application that allows masking sequences of 196 animal and plant genomes is available at http://primer3.ut.ee/. Contact: maido.remm@ut.ee. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Primers do DNA , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Ácido Nucleico , Software , Animais , Humanos , Plantas/genéticaRESUMO
The arrival of 454 sequencing represented a major breakthrough by allowing deeper sequencing of environmental samples than was possible with existing Sanger approaches. Illumina MiSeq provides a further increase in sequencing depth but shorter read length compared with 454 sequencing. We explored whether Illumina sequencing improves estimates of arbuscular mycorrhizal (AM) fungal richness in plant root samples, compared with 454 sequencing. We identified AM fungi in root samples by sequencing amplicons of the SSU rRNA gene with 454 and Illumina MiSeq paired-end sequencing. In addition, we sequenced metagenomic DNA without prior PCR amplification. Amplicon-based Illumina sequencing yielded two orders of magnitude higher sequencing depth per sample than 454 sequencing. Initial analysis with minimal quality control recorded five times higher AM fungal richness per sample with Illumina sequencing. Additional quality control of Illumina samples, including restriction of the marker region to the most variable amplicon fragment, revealed AM fungal richness values close to those produced by 454 sequencing. Furthermore, AM fungal richness estimates were not correlated with sequencing depth between 300 and 30,000 reads per sample, suggesting that the lower end of this range is sufficient for adequate description of AM fungal communities. By contrast, metagenomic Illumina sequencing yielded very few AM fungal reads and taxa and was dominated by plant DNA, suggesting that AM fungal DNA is present at prohibitively low abundance in colonised root samples. In conclusion, Illumina MiSeq sequencing yielded higher sequencing depth, but similar richness of AM fungi in root samples, compared with 454 sequencing.
Assuntos
Biodiversidade , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micorrizas/genéticaRESUMO
BACKGROUND: Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. RESULTS: A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. CONCLUSIONS: This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies.
Assuntos
Células Sanguíneas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Passeriformes/genética , Animais , Galinhas/genética , Biologia Computacional/métodos , Feminino , Genômica/métodos , Anotação de Sequência Molecular , Passeriformes/imunologiaRESUMO
Recent evidence indicates that repeated antibiotic usage lowers microbial diversity and ultimately changes the gut microbiota community. However, the physiological effects of repeated - but not recent - antibiotic usage on microbiota-mediated mucosal barrier function are largely unknown. By selecting human individuals from the deeply phenotyped Estonian Microbiome Cohort (EstMB), we here utilized human-to-mouse fecal microbiota transplantation to explore long-term impacts of repeated antibiotic use on intestinal mucus function. While a healthy mucus layer protects the intestinal epithelium against infection and inflammation, using ex vivo mucus function analyses of viable colonic tissue explants, we show that microbiota from humans with a history of repeated antibiotic use causes reduced mucus growth rate and increased mucus penetrability compared to healthy controls in the transplanted mice. Moreover, shotgun metagenomic sequencing identified a significantly altered microbiota composition in the antibiotic-shaped microbial community, with known mucus-utilizing bacteria, including Akkermansia muciniphila and Bacteroides fragilis, dominating in the gut. The altered microbiota composition was further characterized by a distinct metabolite profile, which may be caused by differential mucus degradation capacity. Consequently, our proof-of-concept study suggests that long-term antibiotic use in humans can result in an altered microbial community that has reduced capacity to maintain proper mucus function in the gut.
Assuntos
Antibacterianos , Bactérias , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Muco , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Camundongos , Muco/metabolismo , Muco/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Feminino , Fezes/microbiologia , Adulto , Pessoa de Meia-Idade , Akkermansia , Camundongos Endogâmicos C57BL , Colo/microbiologia , Bacteroides fragilis/efeitos dos fármacosRESUMO
The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes.
Assuntos
Cromatina/metabolismo , Epigênese Genética , Família Multigênica , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Proteína AIRERESUMO
OBJECTIVE: To develop a new rapid and high-throughput microarray-based prenatal diagnostic test for the detection of trisomy 21 (T21). METHODS: The T21 arrayed primer extension-2 (APEX-2) assay discriminates between trisomy and euploid DNA samples by comparing the signal intensities of allelic fractions of heterozygous single nucleotide polymorphisms (SNPs) after APEX reaction. After preliminary validation using DNA samples from Down syndrome patients, we analyzed DNA samples from cultured and uncultured amniocytes and chorionic villus for 90 SNPs with high heterozygosity from the 21(q21.1q22.2) region. Differences in allelic ratios of heterozygous SNPs in normal and T21 individuals were verified by t-test. RESULTS: Analysis of the T21 APEX-2 assay results revealed that 90 SNPs were sufficient for reliable discrimination between T21 and euploid DNA samples (P≤0.05 for one or both strands). Using 134 clinical samples from cultured or uncultured fetal cells, both the sensitivity and the specificity of the assay were 100%. CONCLUSION: Our study provides a proof of principle demonstration of the use of the modified APEX-2 assay as a new, fast and reliable method for prenatal diagnosis of fetal T21.
Assuntos
Síndrome de Down/diagnóstico , Análise em Microsséries/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Algoritmos , DNA/análise , DNA/metabolismo , Primers do DNA , Diagnóstico Diferencial , Síndrome de Down/genética , Feminino , Feto/metabolismo , Humanos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , GravidezRESUMO
We have developed statistical models for estimating the failure rate of polymerase chain reaction (PCR) primers using 236 primer sequence-related factors. The model involved 1314 primer pairs and is based on more than 80 000 PCR experiments. We found that the most important factor in determining PCR failure is the number of predicted primer-binding sites in the genomic DNA. We also compared different ways of defining primer-binding sites (fixed length word versus thermodynamic model; exact match versus matches including 1-2 mismatches). We found that the most efficient prediction of PCR failure rates can be achieved using a combination of four factors (number of primer-binding sites counted in different ways plus GC% of the primer) combined into single statistical model GM1. According to our estimations from experimental data, the GM1 model can reduce the average failure rate of PCR primers nearly 3-fold (from 17% to 6%). The GM1 model can easily be implemented in software to premask genome sequences for potentially failing PCR primers, thus improving large-scale PCR-primer design.
Assuntos
Primers do DNA/química , Genômica , Modelos Estatísticos , Reação em Cadeia da Polimerase/métodos , Algoritmos , Genoma Humano , Humanos , SoftwareRESUMO
Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.
Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Primers do DNA , Genótipo , Humanos , MutaçãoRESUMO
Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) has revolutionized our understanding of chromatin-related biological processes. The method, however, requires thousands of cells and has therefore limited applications in situations where cell numbers are limited. Here we describe a novel method called Restriction Assisted Tagmentation Chromatin Immunoprecipitation (RAT-ChIP) that enables global histone modification profiling from as few as 100 cells. The method is simple, cost-effective and takes a single day to complete. We demonstrate the sensitivity of the method by deriving the first genome-wide maps of histone H3K4me3 and H3K27me3 modifications of inner cell mass and trophectoderm of bovine blastocyst stage embryos.
Assuntos
Massa Celular Interna do Blastocisto/metabolismo , Imunoprecipitação da Cromatina , Histonas/metabolismo , Trofoblastos/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Fertilização in vitro , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Humanos , Oócitos/citologia , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNARESUMO
Extended-spectrum beta-lactamases (ESBL) and AmpC producing-Escherichia coli have spread worldwide, but data about ESBL-producing-E. coli in the Northern and Eastern regions of Europe is scant. The aim of this study has been to describe the phenotypical and molecular epidemiology of different ESBL/AmpC/Carbapenemases genes in E. coli strains isolated from the Baltic States (Estonia, Latvia, and Lithuania), Norway and St. Petersburg (Russia), and to determine the predominant multilocus sequence type and single nucleotide polymorphisms diversity of E. coli isolates deduced by whole genome sequencing (WGS). A total of 10,780 clinical E. coli strains were screened for reduced sensitivity to third-generation cephalosporins. They were collected from 21 hospitals located in Estonia, Latvia, Lithuania, Norway and St. Petersburg during a 5 month period in 2012. The overall prevalence of ESBL/AmpC strains was 4.7% by phenotypical test and 3.9% by sequencing. We found more strains with the ESBL/AmpC phenotype and genotype in St. Petersburg and Latvia than other countries. Of phenotypic E. coli strains, 85% contained confirmed ESBL genes (including bla CTX-M, bla TEM- 29, bla TEM- 71), AmpC genes (bla CMY- 59, bla ACT- 12 / - 15 / - 20, bla ESC- 6, bla FEC- 1, bla DHA- 1), or carbapenemase genes (bla NDM- 1). bla CTX-M- 1, bla CTX-M - 14 and bla CTX-M- 15 were found in all countries, but bla CTX-M- 15 prevalence was higher in Latvia than in St. Petersburg (Russia), Estonia, Norway and Lithuania. The dominating AmpC genes were bla CMY- 59 in the Baltic States and Norway, and bla DHA- 1 in St. Petersburg. E. coli strains belonged to 83 different sequence types, of which the most prevalent was ST131 (40%). In conclusion, we generally found low ESBL/AmpC/Carbapenemase prevalence in E. coli strains isolated in Northern/Eastern Europe. However, several inter-country differences in distribution of particular genes and multilocus sequence types were found.
RESUMO
SNPmasker is a comprehensive web interface for masking large eukaryotic genomes. The program is designed to mask SNPs from recent dbSNP database and to mask the repeats with two alternative programs. In addition to the SNP masking, we also offer population-specific substitution of SNP alleles in genomic sequence according to SNP frequencies in HapMap Phase II data. The input to SNPmasker can be defined in chromosomal coordinates or inserted as a sequence. The sequences masked by our web server are most useful as a preliminary step for different primer and probe design tasks. The service is available at http://bioinfo.ebc.ee/snpmasker/ and is free for all users.
Assuntos
Primers do DNA , Genômica/métodos , Sondas de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Software , Alelos , Animais , Bases de Dados de Ácidos Nucleicos , Genoma Humano , Humanos , Internet , Camundongos , Sequências Repetitivas de Ácido Nucleico , Interface Usuário-ComputadorRESUMO
In this article, we describe the working principle and a list of practical applications for GenomeMasker-a program that finds and masks all repeated DNA motifs in fully sequenced genomes. The GenomeMasker exhaustively finds and masks all repeated DNA motifs in studied genomes. The software is optimized for polymerase chain reaction (PCR) primer design. The algorithm is designed for high-throughput work, allowing masking of large DNA regions, even entire eukaryotic genomes. Additionally, the software is able to predict all alternative PCR products from studied genomes for thousands of candidate PCR primer pairs. Practical applications of the GenomeMasker are shown for command-line version of the GenomeMasker, which can be downloaded from http://bioinfo.ut.ee/download/. Graphical Web interfaces with limited options are available at http://bioinfo.ut.ee/genometester/ and http://bioinfo.ut.ee/snpmasker/.
Assuntos
Células Eucarióticas , Genoma , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Software , Animais , Humanos , Internet , Reação em Cadeia da Polimerase/métodos , Valor Preditivo dos Testes , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Fast, accurate and high-throughput identification of bacterial isolates is in great demand. The present work was conducted to investigate the possibility of identifying isolates from unassembled next-generation sequencing reads using custom-made guide trees. RESULTS: A tool named StrainSeeker was developed that constructs a list of specific k-mers for each node of any given Newick-format tree and enables the identification of bacterial isolates in 1-2 min. It uses a novel algorithm, which analyses the observed and expected fractions of node-specific k-mers to test the presence of each node in the sample. This allows StrainSeeker to determine where the isolate branches off the guide tree and assign it to a clade whereas other tools assign each read to a reference genome. Using a dataset of 100 Escherichia coli isolates, we demonstrate that StrainSeeker can predict the clades of E. coli with 92% accuracy and correct tree branch assignment with 98% accuracy. Twenty-five thousand Illumina HiSeq reads are sufficient for identification of the strain. CONCLUSION: StrainSeeker is a software program that identifies bacterial isolates by assigning them to nodes or leaves of a custom-made guide tree. StrainSeeker's web interface and pre-computed guide trees are available at http://bioinfo.ut.ee/strainseeker. Source code is stored at GitHub: https://github.com/bioinfo-ut/StrainSeeker.
RESUMO
BACKGROUND: The design of oligonucleotides and PCR primers for studying large genomes is complicated by the redundancy of sequences. The eukaryotic genomes are particularly difficult to study due to abundant repeats. The speed of most existing primer evaluation programs is not sufficient for large-scale experiments. RESULTS: In order to improve the efficiency and success rate of automatic primer/oligo design, we created a novel method which allows rapid masking of repeats in large sequence files, for example in eukaryotic genomes. It also allows the detection of all alternative binding sites of PCR primers and the prediction of PCR products. The new method was implemented in a collection of efficient programs, the GENOMEMASKER package. The performance of the programs was compared to other similar programs. We also modified the PRIMER3 program, to be able to design primers from lowercase-masked sequences. CONCLUSION: The GENOMEMASKER package is able to mask the entire human genome for non-unique primers within 6 hours and find locations of all binding sites for 10,000 designed primer pairs within 10 minutes. Additionally, it predicts all alternative PCR products from large genomes for given primer pairs.
Assuntos
Primers do DNA/genética , Genoma Humano , Reação em Cadeia da Polimerase/métodos , Sequência de Bases/genética , Sítios de Ligação/genética , Humanos , Dados de Sequência MolecularRESUMO
In this article we describe the working principle and a list of practical applications for GenomeMasker-a program that finds and masks all repeated DNA motifs in fully sequenced genomes. The GenomeMasker exhaustively finds and masks all repeated DNA motifs in studied genomes. The software is optimized for PCR primer design. The algorithm is designed for high-throughput work, allowing masking of large DNA regions, even entire eukaryotic genomes. Additionally, the software is able to predict all alternative PCR products from studied genomes for thousands of candidate PCR primer pairs. Practical applications of the GenomeMasker are shown for command-line version of the GenomeMasker, which can be downloaded from http://bioinfo.ut.ee/download/. Graphical Web interfaces with limited options are available at http://bioinfo.ut.ee/genometester/ and http://bioinfo.ut.ee/snpmasker/.
Assuntos
Primers do DNA/metabolismo , Células Eucarióticas/metabolismo , Genoma/genética , Algoritmos , Sítios de Ligação/genética , SoftwareRESUMO
BACKGROUND: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. RESULTS: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. CONCLUSIONS: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
Assuntos
Diatomáceas/fisiologia , Genoma , Deficiências de Ferro , Adaptação Biológica , Evolução Biológica , Diatomáceas/genética , Regulação da Expressão Gênica , Transferência Genética Horizontal , Genômica/métodos , Dados de Sequência Molecular , Fotossíntese , Análise de Sequência de RNA , Especificidade da EspécieRESUMO
UNLABELLED: MultiPLX is a new program for automatic grouping of PCR primers. It can use many different parameters to estimate the compatibility of primers, such as primer-primer interactions, primer-product interactions, difference in melting temperatures, difference in product length and the risk of generating alternative products from the template. A unique feature of the MultiPLX is the ability to perform automatic grouping of large number (thousands) of primer pairs. AVAILABILITY: Binaries for Windows, Linux and Solaris are available from http://bioinfo.ebc.ee/download/. A graphical version with limited capabilities can be used through a web interface at http://bioinfo.ebc.ee/multiplx/. The source code of the program is available on request for academic users. CONTACT: maido.remm@ut.ee.