Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Curr Rheumatol Rep ; 16(11): 463, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240686

RESUMO

Knee osteoarthritis is a disease that can be initiated along multiple pathways that ultimately leads to pain, loss of function and breakdown of the articular cartilage. While the various pathways have biological and structural elements, the mechanical pathways play a critical role in the development of the disease. The forces and motions occurring during ambulation provide mechanical signals sensed at the scale of the cell that are critical to healthy joint homeostasis. As such, ambulatory changes associated with aging, obesity, or joint injury that occur prior to the development of symptoms of OA can ultimately lead to clinical OA. Conversely, inter-scale signaling (e.g., pain) generated by biological changes in the early stages of OA can produce adaptive ambulatory changes that can modify the rate of OA progression. Thus, the nature of the physical and clinical response to the mechanical signals that occur during ambulation is critical to understanding the etiology of osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Caminhada/fisiologia , Humanos , Osteoartrite do Joelho/patologia , Amplitude de Movimento Articular/fisiologia , Estresse Mecânico , Suporte de Carga/fisiologia
2.
Br J Sports Med ; 48(4): 339-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22936411

RESUMO

PURPOSE: The tennis serve is commonly associated with musculoskeletal injury. Advanced players are able to hit multiple serve types with different types of spin. No investigation has characterised the kinematics of all three serve types for the upper extremity and back. METHODS: Seven NCAA Division I male tennis players performed three successful flat, kick and slice serves. Serves were recorded using an eight camera markerless motion capture system. Laser scanning was utilised to accurately collect body dimensions and data were computed using inverse kinematic methods. RESULTS: There was no significant difference in maximum back extension angle for the flat, kick or slice serves. The kick serve had a higher force magnitude at the back than the flat and slice as well as larger posteriorly directed shoulder forces. The flat serve had significantly greater maximum shoulder internal rotation velocity versus the slice serve. Force and torque magnitudes at the elbow and wrist were not significantly different between the serves. CONCLUSIONS: The kick serve places higher physical demands on the back and shoulder while the slice serve demonstrated lower overall kinetic forces. This information may have injury prevention and rehabilitation implications.


Assuntos
Tênis/fisiologia , Dorso/fisiologia , Fenômenos Biomecânicos/fisiologia , Articulação do Cotovelo/fisiologia , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiologia , Articulação do Punho/fisiologia
3.
Clin Biomech (Bristol, Avon) ; 116: 106286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850881

RESUMO

BACKGROUND: The aim of this study was to test the hypothesis that proinflammatory cytokines correlate with knee loading mechanics during gait following a mechanical walking stimulus in subjects 2 years after anterior cruciate ligament reconstruction. Elevated systemic levels of proinflammatory cytokines can be sustained for years after injury. Considering roughly 50% of these patients progress to Osteoarthritis 10-15 years after injury, a better understanding of the role of proinflammatory cytokines such as tumor necrosis factor-α and Interleukin-1ß on Osteoarthritis risk is needed. METHODS: Serum proinflammatory cytokines concentrations were measured in 21 subjects 2 years after unilateral ACLR from blood drawn at rest and 3.5 h after 30 min of walking. An optoelectronic system and a force plate measured subjects' knee kinetics. Correlations were tested between inflammatory marker response and knee extension and knee adduction moments. FINDINGS: Changes in proinflammatory cytokines due to mechanical stimulus were correlated (R = 0.86) and showed substantial variation between subjects in both cytokines at 3.5 h post-walk. Knee loading correlated with 3.5-h changes in tumor necrosis factor-α concentration (Knee extension moment: R = -0.5, Knee adduction moment: R = -0.5) and Interleukin-1ß concentration (Knee extension moment: R = -0.44). However, no significant changes in concentrations were observed in tumor necrosis factor-α and Interleukin-1ß when comparing baseline and post walking stimulus conditions. INTERPRETATION: The significant associations between changes in serum proinflammatory markers following a mechanical stimulus and gait metrics in subjects at risk for developing Osteoarthritis underscore the importance of investigating the interaction between biomarkers and biomechanical factors in Osteoarthritis development.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Citocinas , Articulação do Joelho , Humanos , Masculino , Feminino , Citocinas/sangue , Adulto , Articulação do Joelho/fisiopatologia , Marcha , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Suporte de Carga , Interleucina-1beta/sangue , Caminhada , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/cirurgia , Fenômenos Biomecânicos , Biomarcadores/sangue , Estresse Mecânico , Ligamento Cruzado Anterior/cirurgia
4.
J Biomech Eng ; 135(10): 101002-10, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23722563

RESUMO

Measures of mean cartilage thickness over predefined regions in the femoral plate using magnetic resonance imaging have provided important insights into the characteristics of knee osteoarthritis (OA), however, this quantification method suffers from the limited ability to detect OA-related differences between knees and loses potentially important information regarding spatial variations in cartilage thickness. The objectives of this study were to develop a new method for analyzing patterns of femoral cartilage thickness and to test the following hypotheses: (1) asymptomatic knees have similar thickness patterns, (2) thickness patterns differ with knee OA, and (3) thickness patterns are more sensitive than mean thicknesses to differences between OA conditions. Bi-orthogonal thickness patterns were extracted from thickness maps of segmented magnetic resonance images in the medial, lateral, and trochlea compartments. Fifty asymptomatic knees were used to develop the method and establish reference asymptomatic patterns. Another subgroup of 20 asymptomatic knees and three subgroups of 20 OA knees each with a Kellgren/Lawrence grade (KLG) of 1, 2, and 3, respectively, were selected for hypotheses testing. The thickness patterns were similar between asymptomatic knees (coefficient of multiple determination between 0.8 and 0.9). The thickness pattern alterations, i.e., the differences between the thickness patterns of an individual knee and reference asymptomatic thickness patterns, increased with increasing OA severity (Kendall correlation between 0.23 and 0.47) and KLG 2 and 3 knees had significantly larger thickness pattern alterations than asymptomatic knees in the three compartments. On average, the number of significant differences detected between the four subgroups was 4.5 times greater with thickness pattern alterations than mean thicknesses. The increase was particularly marked in the medial compartment, where the number of significant differences between subgroups was 10 times greater with thickness pattern alterations than mean thickness measurements. Asymptomatic knees had characteristic regional thickness patterns and these patterns were different in medial OA knees. Assessing the thickness patterns, which account for the spatial variations in cartilage thickness and capture both cartilage thinning and swelling, could enhance the capacity to detect OA-related differences between knees.


Assuntos
Doenças Assintomáticas , Cartilagem/patologia , Fêmur , Joelho , Osteoartrite do Joelho/patologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico
5.
Front Bioeng Biotechnol ; 11: 1176471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383522

RESUMO

Objective: To characterize ambulatory knee moments with respect to medial knee osteoarthritis (OA) severity comprehensively and to assess the possibility of developing a severity index combining knee moment parameters. Methods: Nine parameters (peak amplitudes) commonly used to quantify three-dimensional knee moments during walking were analyzed for 98 individuals (58.7 ± 9.2 years old, 1.69 ± 0.09 m, 76.9 ± 14.5 kg, 56% female), corresponding to three medial knee osteoarthritis severity groups: non-osteoarthritis (n = 22), mild osteoarthritis (n = 38) and severe osteoarthritis (n = 38). Multinomial logistic regression was used to create a severity index. Comparison and regression analyses were performed with respect to disease severity. Results: Six of the nine moment parameters differed statistically significantly among severity groups (p ≤ 0.039) and five reported statistically significant correlation with disease severity (0.23 ≤ |r| ≤ 0.59). The proposed severity index was highly reliable (ICC = 0.96) and statistically significantly different between the three groups (p < 0.001) as well as correlated with disease severity (r = 0.70). Conclusion: While medial knee osteoarthritis research has mostly focused on a few knee moment parameters, this study showed that other parameters differ with disease severity. In particular, it shed light on three parameters frequently disregarded in prior works. Another important finding is the possibility of combining the parameters into a severity index, which opens promising perspectives based on a single figure assessing the knee moments in their entirety. Although the proposed index was shown to be reliable and associated with disease severity, further research will be necessary particularly to assess its validity.

6.
J Biomech Eng ; 134(9): 091006, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22938373

RESUMO

The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/fisiologia , Perna (Membro)/fisiologia , Movimento , Coxa da Perna/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Medição de Risco
7.
J Biomech Eng ; 134(1): 011010, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22482665

RESUMO

The purpose of this study was to determine the contribution of changes in amplitude and phasing of medio-lateral trunk sway to a change in the knee adduction moment when walking with increased medio-lateral trunk sway. Kinematic and kinetic data of walking trials with normal and with increased trunk sway were collected for 19 healthy volunteers using a standard motion analysis system. The relationship between the change in first peak knee adduction moment (ΔKAM) and change in trunk sway amplitude (ΔSA; difference between maximum contralateral trunk lean and maximum ipsilateral trunk lean) and phasing (SP; time of heel-strike relative to time of maximum contralateral and time of maximum ipsilateral trunk lean) was determined using nonlinear regression analysis. On average, subjects increased their SA by 9.7 ± 3.6 deg (P < 0.001) with an average SP of 98.8 ± 88.8 ms resulting in an average reduction in the first peak knee adduction moment of -55.2 ± 30.3% (P < 0.001). 64.3% of variability in change in peak knee adduction moment with the increased trunk sway condition was explained by both differences in SA and SP, and the relationship among these parameters was described by the regression equation ΔKAM = 27.220-4.128 [middle dot] ΔSA-64.785 [middle dot] cos(SP). Hence, not only the amplitude but also the phasing of trunk motion is critical. Not only lower limb movement but also lumbar and thoracic lateral flexion should be considered in the decision making process for an optimal intervention aimed at reducing the load on the medial compartment of the knee during walking. However, these promising findings originated from studies on healthy subjects and their relevance for gait training interventions in patients with presumably painful knee osteoarthritis remains to be determined.


Assuntos
Abdome , Marcha/fisiologia , Joelho/fisiologia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Osteoartrite do Joelho/prevenção & controle , Caminhada/fisiologia , Suporte de Carga , Adulto Jovem
8.
J Orthop Res ; 40(1): 129-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713477

RESUMO

Disruptions in knee biomechanics during walking following anterior cruciate ligament (ACL) injury have been suggested to lead to the development of premature knee osteoarthritis (OA) and to be potential markers of OA risk and targets for intervention. This study investigated if side-to-side differences in early stance peak vertical ground reaction force (vGRF) during walking 2 years after ACL reconstruction are associated with longer-term (10 years post-reconstruction) changes in patient-reported outcomes. Twenty-eight participants (mean age: 28.7 ± 6.4 years) with primary unilateral ACL reconstruction underwent gait analysis for assessment of peak vGRF and completed Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) surveys at 2 years post-surgery (2.2 ± 0.3 years) and completed surveys at follow-up 10 years post-surgery (10.5 ± 0.9 years). Associations between changes (10-2 years) in patient-reported outcomes and between limb-differences in vGRF were assessed with Pearson or Spearman's ρ correlation coefficients and exploratory backwards elimination multiple linear regression analyses. Differences in vGRF between symptomatic progressors and non-progressors were also assessed. The side-to-side difference in vGRF was related to the variability in longer-term changes in patient-reported outcome metrics and distinguished symptomatic progressors from non-progressors. Participants with higher vGRF in the reconstructed (ACLR) limb versus the contralateral limb had worsening of IKDC (R = -0.391, p = 0.040), KOOS pain (ρ = -0.396, p = 0.037), KOOS symptoms (ρ = -0.572, p = 0.001), and KOOS quality of life (R = -0.458, p = 0.014) scores at follow-up. Symptomatic progressors had greater vGRF in the ACLR limb as compared to the contralateral limb at baseline than non-progressors (p = 0.023). These data highlight associations between a simple-to-measure gait metric and the development of long-term clinical symptoms after an ACL injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Humanos , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Caminhada , Adulto Jovem
9.
J Orthop Res ; 40(4): 791-798, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34185322

RESUMO

Mechanical factors have been implicated in the development of osteoarthritis after anterior cruciate ligament (ACL) reconstruction. This study tested for associations between ambulatory joint loading (total joint moment [TJM] and vertical ground reaction force [vGRF]) and changes in serum levels of cartilage oligomeric matrix protein (COMP) in response to a mechanical stimulus (30-min walk) in individuals with ACL reconstruction. Twenty-five subjects (mean age: 34.5 ± 9.8 years; 2.2 ± 0.2 years post-surgery) with primary unilateral ACL reconstruction underwent gait analysis for assessment of peak vGRF and TJM first (TJM1) and second (TJM2) peaks. Serum COMP concentrations were measured by enzyme-linked immunosorbent assay immediately before, 3.5 h, and 5.5 h after a 30-min walk. Pearson correlation coefficients and backward stepwise multiple linear regression analysis, with adjustments for age, sex, body mass index, and between-limb speed difference, assessed associations between changes in COMP and between-limb differences in joint loading parameters. Greater TJM1 (R = 0.542, p = 0.005), TJM2 (R = 0.460, p = 0.021), and vGRF (R = 0.577, p = 0.003) in the ACL-reconstructed limb as compared to the contralateral limb were associated with higher COMP values 3.5 h following the 30-min walk. Change in COMP at 5.5 h became a significant predictor of the between-limb difference in TJM1 and vGRF in multivariate analyses after accounting for the between-limb speed difference. These results demonstrate that higher TJM and vGRF in the ACLR limb as compared to the contralateral limb are associated with higher relative COMP levels 3.5 and 5.5 h after a 30-min walk. Future work should investigate the effect of therapies to alter joint loading on the biological response in individuals after ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Proteína de Matriz Oligomérica de Cartilagem , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Anticorpos Monoclonais Humanizados , Fenômenos Biomecânicos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Marcha/fisiologia , Humanos , Articulação do Joelho/fisiologia , Caminhada/fisiologia , Adulto Jovem
10.
Annu Rev Biomed Eng ; 12: 401-33, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20617942

RESUMO

This review describes how computational modeling can be combined with noninvasive gait measurements to describe and explain muscle and joint function in human locomotion. Five muscles--the gluteus maximus, gluteus medius, vasti, soleus, and gastrocnemius--contribute most significantly to the accelerations of the center of mass in the vertical, fore-aft, and medio-lateral directions when humans walk and run at their preferred speeds. Humans choose to switch from a walk to a run at speeds near 2 m s(-1) to enhance the biomechanical performance of the ankle plantarflexors and to improve coordination of the knee and ankle muscles during stance. Muscles that do not span a joint can contribute to the contact force transmitted by that joint and therefore affect its stability. In walking, for example, uniarticular muscles that cross the hip and ankle act to create the adduction moment at the knee, thereby contributing to the contact force present in the medial compartment.


Assuntos
Articulações/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Marcha/fisiologia , Humanos , Instabilidade Articular/fisiopatologia , Ligamentos Articulares/fisiologia , Masculino
11.
Osteoporos Int ; 22(12): 2981-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21318440

RESUMO

UNLABELLED: The amount and intensity of walking to maintain a healthy skeleton is unknown. This study examined the relationship between habitual walking activity and femoral bone mineral density (BMD) in healthy individuals using a quantitative theory for bone maintenance. Our results suggest a gender, weight, and speed sensitivity of walking interventions. INTRODUCTION: Walking has been extensively promoted for the prevention of osteoporosis. The amount and intensity of walking to maintain a healthy skeleton is unknown and evidence to support a specific target of steps per day is lacking. The goal of our study was to examine the relationship between habitual walking activity and femoral bone mineral density (BMD) in healthy individuals using a quantitative theory for bone maintenance. METHODS: Habitual walking activity and total femur BMD were measured in 105 individuals (49-64 years). An index of cumulative loading (bone density index, BDI) was examined as a predictor of BMD. The BDI-BMD relationship was used to predict the steps per day to maintain healthy BMD values for a range of body weights (BW) and walking speeds. RESULTS: For females but not for males, BDI was correlated with BMD (r (2) = 0.19, p < 0.001). The total required steps per day to maintain a T-score of -1.0 for a female with the average BW of the study cohort, walking at 1.00 m/s is 4,892 steps/day. Substantially more steps (18,568 steps/day) are required for a female with a BW 20% lighter than the average for our female cohort. For these lighter females, only at a walking speed greater than 1.32 m/s was 10,000 steps/day sufficient to maintain a T-score of -1.0. CONCLUSIONS: Our results suggest a gender, weight, and speed sensitivity of walking interventions for osteoporosis. In persons of low BW, the necessary steps per day to maintain BMD can be substantially greater than the often-quoted 10,000 steps.


Assuntos
Densidade Óssea/fisiologia , Fêmur/fisiologia , Caminhada/estatística & dados numéricos , Absorciometria de Fóton , Peso Corporal , Estudos Transversais , Feminino , Fêmur/diagnóstico por imagem , Humanos , Atividades de Lazer , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
12.
J Biomech Eng ; 133(7): 071008, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21823747

RESUMO

The incidence of anterior cruciate ligament (ACL) injury remains high, and there is a need for simple, cost effective methods to identify athletes at a higher risk for ACL injury. Wearable measurement systems offer potential methods to assess the risk of ACL injury during jumping tasks. The objective of this study was to assess the capacity of a wearable inertial-based system to evaluate ACL injury risk during jumping tasks. The system accuracy for measuring temporal events (initial contact, toe-off), jump height, and sagittal plane angles (knee, trunk) was assessed by comparing results obtained with the wearable system to simultaneous measurements obtained with a marker-based optoelectronic reference system. Thirty-eight healthy participants (20 male and 18 female) performed drop jumps with bilateral and unilateral support landing. The mean differences between the temporal events obtained with both systems were below 5 ms, and the precisions were below 24 ms. The mean jump heights measured with both systems differed by less than 1 mm, and the associations (Pearson correlation coefficients) were above 0.9. For the discrete angle parameters, there was an average association of 0.91 and precision of 3.5° for the knee flexion angle and an association of 0.77 and precision of 5.5° for the trunk lean. The results based on the receiver-operating characteristic (ROC) also demonstrated that the proposed wearable system could identify movements at higher risk for ACL injury. The area under the ROC plots was between 0.89 and 0.99 for the knee flexion angle and between 0.83 and 0.95 for the trunk lean. The wearable system demonstrated good concurrent validity with marker-based measurements and good discriminative performance in terms of the known risk factors for ACL injury. This study suggests that a wearable system could be a simple cost-effective tool for conducting risk screening or for providing focused feedback.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/fisiologia , Traumatismos em Atletas/prevenção & controle , Traumatismos do Joelho/prevenção & controle , Monitorização Ambulatorial/instrumentação , Medicina Esportiva/instrumentação , Esportes/fisiologia , Adulto , Ligamento Cruzado Anterior/fisiopatologia , Traumatismos em Atletas/fisiopatologia , Fenômenos Biomecânicos , Vestuário , Desenho de Equipamento , Feminino , Humanos , Traumatismos do Joelho/epidemiologia , Articulação do Joelho/fisiologia , Articulação do Joelho/fisiopatologia , Masculino , Movimento , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Análise e Desempenho de Tarefas
13.
J Biomech Eng ; 133(1): 011006, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21186896

RESUMO

The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.


Assuntos
Marcha/fisiologia , Meniscos Tibiais/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Análise de Elementos Finitos , Humanos , Articulação do Joelho/fisiologia , Meniscos Tibiais/cirurgia , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Amplitude de Movimento Articular , Fatores de Risco , Rotação , Resistência à Tração , Suporte de Carga/fisiologia
14.
Sports Biomech ; 10(4): 378-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22303788

RESUMO

The tennis serve has the potential for musculoskeletal injury as it is an overhead motion and is performed repetitively during play. Early studies evaluating the biomechanics and injury potential of the tennis serve utilized skin-based marker technologies; however, markerless motion measurement systems have recently become available and have obviated some of the problems associated with the marker-based technology. The late cocking and early acceleration phases of the kinetic chain of the service motion produce the highest internal forces and pose the greatest risk of injury during the service motion. Previous biomechanical data on the tennis serve have primarily focused on the flat serve, with some data on the kick serve, and very little published data elucidating the biomechanics of the slice serve. This review discusses the injury potential of the tennis serve with respect to the four phases of the service motion, the history, and early findings of service motion evaluation, as well as biomechanical data detailing the differences between the three types of serves and how this may relate to injury prevention, rehabilitation, and return to play.


Assuntos
Movimento/fisiologia , Tênis/lesões , Tênis/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Humanos , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Lesões do Ombro , Articulação do Ombro/fisiologia , Traumatismos dos Tendões/fisiopatologia
15.
J Clin Med ; 10(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530358

RESUMO

Alterations in cartilage thickness (CTh) are a hallmark of knee osteoarthritis, which remain difficult to characterize at high resolution, even with modern magnetic resonance imaging (MRI), due to a paucity of standardization tools. This study aimed to assess a computational anatomy method producing standardized two-dimensional femorotibial CTh maps. The method was assessed with twenty knees, processed following three common experimental scenarios. Cartilage thickness maps were obtained for the femorotibial cartilages by reconstructing bone and cartilage mesh models in tree-dimension, calculating three-dimensional CTh maps, and anatomically standardizing the maps. The intra-operator accuracy (median (interquartile range, IQR) of -0.006 (0.045) mm), precision (0.152 (0.070) mm), entropy (7.02 (0.71) and agreement (0.975 (0.020))) results suggested that the method is adequate to capture the spatial variations in CTh and compare knees at varying osteoarthritis stages. The lower inter-operator precision (0.496 (0.132) mm) and agreement (0.808 (0.108)) indicate a possible loss of sensitivity to detect differences in a setting with multiple operators. The results confirmed the promising potential of anatomically standardized maps, with the lower inter-operator reproducibility stressing the need to coordinate operators. This study also provided essential reference data and indications for future research using CTh maps.

16.
Gait Posture ; 86: 125-131, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721689

RESUMO

BACKGROUND: Reduced quadriceps function and proprioception can cause decreased mobility during stair navigation in patients with knee pain. Patients can benefit from interventions to mitigate pain and restore quadriceps function. Activating the somatosensory system via intermittent vibrational stimulation has the potential to improve stair navigation mobility in patients with knee pain by moderating quadriceps inhibition and enhancing proprioception. RESEARCH QUESTION: What are the effects of intermittent vibrational stimulus synchronized to stair ambulation on muscle activity, kinematics, kinetics, and pain using a randomized controlled clinical trial design. METHODS: Thirty-eight patients with knee pain were enrolled into a blinded cross-over study, and twenty-nine patients completed all assessments and analyses. Subjects were randomly assigned sequentially to both an active Treatment A (active) and passive Treatment B (passive) worn at the knee during ambulation for 4 weeks with a 2-week washout period between treatments. RESULTS: Knee pain during stair navigation was significantly reduced only with Treatment A (P = 0.007). During ascent, Treatment A (active) significantly increased vastus lateralis activation (P = 0.01), increased knee flexion moment (P = 0.04) and decreased trunk flexion angles (P = 0.015) between baseline and 4-week follow-up. After using passive Treatment B, there were no significant differences in pain (P = 0.19), knee flexion moment (P = 0.09), and trunk flexion angles (P = 0.23). Changes in muscle function correlated significantly with changes in knee flexion moment and trunk flexion with Treatment A (P < 0.015). Descending differed from ascending in response to Treatment A with significantly decreased knee flexion moment(P = 0.04), hip(P = 0.02) and ankle(P = 0.04) flexion angles. Treatment B significantly reduced hip flexion angles (P = 0.005) but not knee flexion moment (P = 0.85). SIGNIFICANCE: The results of this study suggest that intermittent vibration can improve joint motion and loading during stair navigation by enhancing quadriceps function during stair ascent and improving movement control during stair descent by modifying an adaptive flexed movement pattern in the lower limb.


Assuntos
Artralgia/fisiopatologia , Articulação do Joelho/fisiopatologia , Amplitude de Movimento Articular/fisiologia , Subida de Escada/fisiologia , Fenômenos Biomecânicos/fisiologia , Estudos Cross-Over , Eletromiografia , Humanos , Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tronco/fisiopatologia , Vibração
17.
J Orthop Res ; 39(3): 619-627, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32497304

RESUMO

This study aimed to determine if changes in knee adduction moment (KAM) after 6 months of variable-stiffness shoe wear are associated with changes in symptoms or serum levels of cartilage oligomeric matrix protein (COMP) following a mechanical stimulus in subjects with medial knee osteoarthritis (OA). Twenty-five subjects were enrolled in the study and assigned a variable-stiffness shoe, and 19 subjects completed the 6-month follow-up. At baseline and follow-up subjects underwent gait analysis in control and variable-stiffness shoes, completed Western Ontario and McMaster Universities (WOMAC) questionnaires, and serum COMP concentrations were measured immediately before, 3.5 and 5.5 hours after a 30-minute walking activity. Relationships between changes in KAM (first peak and impulse) and changes in (a) COMP levels in response to the 30-minute walking activity and (b) WOMAC scores from baseline to 6-month follow-up were assessed by Pearson correlation coefficients. Changes in first peak KAM were associated with changes in COMP levels 5.5 hours postactivity from baseline to follow-up (R = .564, P = .045). Subjects with greater reductions in KAM had larger decreases in COMP (expressed as a percent of preactivity levels) at follow-up. Subjects with greater reductions in KAM impulse had significantly greater improvements in WOMAC Pain (R = -.56, P = .015) and Function (R = -.52, P = .028) scores at follow-up. The study results demonstrated the magnitude of reduction in the KAM wearing a variable-stiffness shoe is associated with decreases in mechanically stimulated COMP levels and pain/function. This work suggests that interactions between COMP and joint loading during walking should be further investigated in future studies of treatment outcomes in OA.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/sangue , Articulação do Joelho/fisiologia , Osteoartrite do Joelho/terapia , Sapatos/estatística & dados numéricos , Idoso , Feminino , Órtoses do Pé/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/complicações , Dor/etiologia , Dor/prevenção & controle , Estudos Prospectivos , Índice de Gravidade de Doença , Suporte de Carga
18.
J Funct Morphol Kinesiol ; 6(1)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804113

RESUMO

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.

19.
J Orthop Res ; 39(8): 1585-1595, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33788306

RESUMO

Osteoarthritis (OA) is a leading cause of pain and disability for which disease-modifying treatments remain lacking. This is because the symptoms and radiographic changes of OA occur after the onset of likely irreversible changes. Defining and treating earlier disease states are therefore needed to delay or to halt OA progression. Taking this concept a step further, studying OA pathogenesis before disease onset by characterizing potentially reversible markers of increased OA risk to identify a state of "pre-osteoarthritis (pre-OA)" shifts the paradigm towards OA prevention. The purpose of this review is to summarize the 42 studies comprising the 2019 Kappa Delta Elizabeth Lanier Award where conceptualization of a systems-based definition for "pre-osteoarthritis (pre-OA)" was followed by demonstration of potentially reversible markers of heightened OA risk in patients after anterior cruciate ligament (ACL) injury and reconstruction. In the process, these efforts contributed a new magnetic resonance imaging method of ultrashort echo time (UTE) enhanced T2* mapping to visualize joint tissue damage before the development of irreversible changes. The studies presented here support a transformative approach to OA that accounts for interactions between mechanical, biological, and structural markers of OA risk to develop and evaluate new treatment strategies that can delay or prevent the onset of clinical disease. This body of work was inspired by and performed for patients. Shifting the paradigm from attempting to modify symptomatic radiographic OA towards monitoring and reversing markers of "pre-OA" opens the door for transforming the clinical approach to OA from palliation to prevention.


Assuntos
Lesões do Ligamento Cruzado Anterior , Distinções e Prêmios , Osteoartrite do Joelho , Osteoartrite , Lesões do Ligamento Cruzado Anterior/complicações , Biologia , Humanos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Osteoartrite/complicações , Osteoartrite do Joelho/etiologia
20.
Am J Sports Med ; 49(3): 675-683, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33507800

RESUMO

BACKGROUND: Patellofemoral joint degeneration and dysfunction after anterior cruciate ligament reconstruction (ACLR) are increasingly recognized as contributors to poor clinical outcomes. PURPOSE: To determine if greater deep cartilage matrix disruption at 2 years after ACLR, as assessed by elevated patellofemoral magnetic resonance imaging (MRI) ultrashort echo time-enhanced T2* (UTE-T2*), is correlated with (1) worse patient-reported knee function and pain and (2) gait metrics related to patellofemoral tracking and loading, such as greater external rotation of the tibia at heel strike, reduced knee flexion moment (as a surrogate of quadriceps function), and greater knee flexion angle at heel strike. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: MRI UTE-T2* relaxation times in patellar and trochlear deep cartilage were compared with patient-reported outcomes and ambulatory gait metrics in 60 patients with ACLR at 2 years after reconstruction. ACLR gait metrics were compared with those of 60 uninjured reference patients matched by age, body mass index, and sex. ACLR UTE-T2* values were compared with those of 20 uninjured reference patients. RESULTS: Higher trochlear UTE-T2* values were associated with worse Knee injury and Osteoarthritis Outcome Scores (KOOS) Sport/Recreation subscale scores (rho = -0.32; P = .015), and showed a trend for association with worse KOOS Pain subscale scores (rho = -0.26; P = .045). At 2 years after ACLR, greater external rotation of the tibia at heel strike was associated with higher patellar UTE-T2* values (R = 0.40; P = .002); greater knee flexion angle at heel strike was associated with higher trochlear UTE-T2* values (rho = 0.39; P = .002); and greater knee flexion moment showed a trend for association with higher trochlear UTE-T2* values (rho = 0.30; P = .019). Patellar cartilage UTE-T2* values, knee flexion angle at heel strike, and external rotation of the tibia at heel strike were all elevated in ACLR knees as compared with reference knees (P = .029, .001, and .044, respectively). CONCLUSION: Patellofemoral deep cartilage matrix disruption, as assessed by MRI UTE-T2*, was associated with reduced sports and recreational function and with gait metrics reflective of altered patellofemoral loading. As such, the findings provide new mechanistic information important to improving clinical outcomes related to patellofemoral dysfunction after ACLR.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos Transversais , Humanos , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Medidas de Resultados Relatados pelo Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA