Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114098, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625793

RESUMO

Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Ribossomos , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos
2.
Nucleic Acid Ther ; 28(5): 285-296, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30088967

RESUMO

The advent of therapeutic mRNAs significantly increases the possibilities of protein-based biologics beyond those that can be synthesized by recombinant technologies (eg, monoclonal antibodies, extracellular enzymes, and cytokines). In addition to their application in the areas of vaccine development, immune-oncology, and protein replacement therapies, one exciting possibility is to use therapeutic mRNAs to program undesired, diseased cells to synthesize a toxic intracellular protein, causing cells to self-destruct. For this approach to work, however, methods are needed to limit toxic protein expression to the intended cell type. Here, we show that inclusion of microRNA target sites in therapeutic mRNAs encoding apoptotic proteins, Caspase or PUMA, can prevent their expression in healthy hepatocytes while triggering apoptosis in hepatocellular carcinoma cells.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Caspases/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , MicroRNAs/uso terapêutico , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , Células RAW 264.7 , RNA Mensageiro/uso terapêutico
3.
ACS Med Chem Lett ; 8(2): 196-200, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197311

RESUMO

Several monoclonal antibodies and inhibitors targeting CD38, an ectoenzyme overexpressed on malignant plasma cells, have previously been discovered. Herein, we expand structure-activity relationships of reported small-molecule thiazoloquinolinones and show that several 4-cyclohexylamino analogues have potent binding affinity for CD38 using surface plasmon resonance. Moreover, active amine analogues could be acylated and functionalized with alkyne and fluorescein groups. Fluorescein analogue 21 bound selectively to CD38 overexpressing cells, demonstrating the potential utility of thiazoloquinolinones as small-molecule conjugates for the delivery of therapeutic and imaging agents.

4.
Sci Transl Med ; 4(128): 128ra39, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22491949

RESUMO

We describe the development and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors. DTXL-TNP is targeted to prostate-specific membrane antigen, a clinically validated tumor antigen expressed on prostate cancer cells and on the neovasculature of most nonprostate solid tumors. DTXL-TNP was developed from a combinatorial library of more than 100 TNP formulations varying with respect to particle size, targeting ligand density, surface hydrophilicity, drug loading, and drug release properties. Pharmacokinetic and tissue distribution studies in rats showed that the NPs had a blood circulation half-life of about 20 hours and minimal liver accumulation. In tumor-bearing mice, DTXL-TNP exhibited markedly enhanced tumor accumulation at 12 hours and prolonged tumor growth suppression compared to a solvent-based DTXL formulation (sb-DTXL). In tumor-bearing mice, rats, and nonhuman primates, DTXL-TNP displayed pharmacokinetic characteristics consistent with prolonged circulation of NPs in the vascular compartment and controlled release of DTXL, with total DTXL plasma concentrations remaining at least 100-fold higher than sb-DTXL for more than 24 hours. Finally, initial clinical data in patients with advanced solid tumors indicated that DTXL-TNP displays a pharmacological profile differentiated from sb-DTXL, including pharmacokinetics characteristics consistent with preclinical data and cases of tumor shrinkage at doses below the sb-DTXL dose typically used in the clinic.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Nanopartículas/química , Taxoides/farmacologia , Taxoides/farmacocinética , Animais , Linhagem Celular Tumoral , Docetaxel , Humanos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Polímeros/química , Ratos , Taxoides/administração & dosagem , Taxoides/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA