Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Primatol ; : e23621, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528343

RESUMO

Edge effects result from the penetration to varying depths and intensities, of abiotic and biotic conditions from the surrounding non-forest matrix into the forest interior. Although 70% of the world's forests are within 1 km of a forest edge, making edge effects a dominant feature of most forest habitats, there are few empirical data on inter-site differences in edge responses in primates. We used spatially explicit capture-recapture (SECR) models to determine spatial patterns of density for two species of mouse lemurs (Microcebus murinus and Microcebus ravelobensis) in two forest landscapes in northwestern Madagascar. The goal of our study was to determine if mouse lemurs displayed spatially variable responses to edge effects. We trapped animals using Sherman live traps in the Mariarano Classified Forest (MCF) and in the Ambanjabe Forest Fragment Site (AFFS) site within Ankarafantsika National Park. We trapped 126 M. murinus and 79 M. ravelobensis at MCF and 78 M. murinus and 308 M. ravelobensis at AFFS. For M. murinus, our top model predicted a positive edge response, where density increased towards edge habitats. In M. ravelobensis, our top model predicted a negative edge response, where density was lower near the forest edges and increased towards the forest interior. At regional and landscape-specific scales, SECR models estimated different density patterns between M. murinus and M. ravelobensis as a result of variation in edge distance. The spatial variability of our results using SECR models indicate the importance of studying the population ecology of primates at varying scales that are appropriate to the processes of interest. Our results lend further support to the theory that some lemurs exhibit a form of ecological flexibility in their responses to forest loss, forest fragmentation, and associated edge effects.

2.
Am J Primatol ; 85(2): e23458, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504317

RESUMO

The relevance of emerging infectious diseases continues to grow worldwide as human activities increasingly extend into formerly remote natural areas. This is particularly noticeable on the island of Madagascar. As closest relatives to humans on the island, lemurs are of particular relevance as a potential origin of zoonotic pathogen spillover. Knowledge of pathogens circulating in lemur populations is, however, very poor. Particularly little is known about lemur hemoparasites. To infer host range, ecological and geographic spread of the recently described hemoparasitic nematode Lemurfilaria lemuris in northwestern Madagascar, a total of 942 individuals of two mouse lemur species (Microcebus murinus [n = 207] and Microcebus ravelobensis [n = 433]) and two rodent species (the endemic Eliurus myoxinus [n = 118] and the invasive Rattus rattus [n = 184]) were captured in two fragmented forest landscapes (Ankarafantsika National Park and Mariarano Classified Forest) in northwestern Madagascar for blood sample examination. No protozoan hemoparasites were detected by microscopic blood smear screening. Microfilaria were present in 1.0% (2/207) of M. murinus and 2.1% (9/433) of M. ravelobensis blood samples but not in rodent samples. Internal transcribed spacer 1 (ITS-1) sequences were identical to an unnamed Onchocercidae species previously described to infect a larger lemur species, Propithecus verreauxi, about 650 km further south. In contrast to expectations, L. lemuris was not detected. The finding of a pathogen in a distantly related host species, at a considerable geographic distance from the location of its original detection, instead of a microfilaria species previously described for one of the studied host species in the same region, illustrates our low level of knowledge of lemur hemoparasites, their host ranges, distribution, modes of transmission, and their zoonotic potential. Our findings shall stimulate new research that will be of relevance for both conservation medicine and human epidemiology.


Assuntos
Cheirogaleidae , Lemur , Lemuridae , Strepsirhini , Ratos , Animais , Humanos , Especificidade de Hospedeiro , Roedores , Madagáscar , Especificidade da Espécie
3.
Folia Primatol (Basel) ; 92(1): 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33291109

RESUMO

Madagascar is home to many threatened and endemic primate species, yet this island has seen dramatic declines in lemur habitat due to forest loss. This forest loss has resulted in an increasingly fragmented forest landscape, with fragments isolated from each other by grasslands (i.e., matrix). The grassland matrix is not entirely homogeneous containing matrix elements such as isolated trees and shrubs and linear features such as drainage lines. Because most lemurs are predominantly arboreal, they may preferentially use matrix elements to facilitate dispersal between fragments for access to mates or reduce feeding competition, allowing gene flow between fragments of habitat. Therefore, it is important to understand to what degree they use the matrix. We investigated matrix use in two mouse lemurs, the grey mouse lemur (Microcebus murinus) and the golden-brown mouse lemur (Microcebus ravelobensis) in a fragmented landscape in northwest Madagascar. We tested the predictions that: (1) lemurs use matrix less often than forest fragments, (2) if they use the matrix, then they will preferentially use matrix elements compared to grassland, and (3) M. murinus will disperse into the matrix further than M. ravelobensis. In 2011, we visually surveyed line transects in four areas containing matrix elements and four adjacent forest fragments during nocturnal walks. In 2017, we set up traplines in four areas of the matrix containing matrix elements, three areas that were grassland, and six traplines in adjacent fragments. We compared the relative abundance of mouse lemurs in matrix transects to fragmented forest transects, and the relative abundance of captured lemurs in matrix elements, grassland, and fragment traplines. We found that encounter rates of mouse lemurs did not significantly differ between the matrix and fragmented forest transects or traplines. Our sample size was too low to determine if the mean distance from the forest was greater for either Microcebus spp. Our study highlights that mouse lemurs do use matrix elements and there may be interspecific differences in use. Further research is needed to confirm species-specific matrix use, why mouse lemurs use matrix, and how much matrix elements facilitate movement for each species in fragmented landscapes.


Assuntos
Cheirogaleidae/fisiologia , Ecossistema , Animais , Comportamento Animal , Florestas , Pradaria , Madagáscar
4.
BMC Ecol ; 20(1): 69, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33334336

RESUMO

BACKGROUND: Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge. We installed 16 pairs of 20 m2 vegetation plots along each transect and measured nine vegetation parameters. To determine the responses of the vegetation and animals to an increasing distance to the edge, we tested the fit of four alternative mathematical functions (linear, power, logistic and unimodal) to the data and derived the depth of edge influence (DEI) for all parameters. RESULTS: Logistic and unimodal functions best explained edge responses of vegetation parameters, and the logistic function performed best for abundance and body mass of M. ravelobensis. The DEI varied between 50 m (no. of seedlings, no. of liana, dbh of large trees [dbh ≥ 10 cm]) and 460 m (tree height of large trees) for the vegetation parameters, whereas it was 340 m for M. ravelobensis abundance and 390 m for body mass, corresponding best to the DEI of small tree [dbh < 10 cm] density (360 m). Small trees were significantly taller and the density of seedlings was higher in the interior than in the edge habitat. However, there was no significant difference in M. ravelobensis abundance and body mass between interior and edge habitats, suggesting that M. ravelobensis did not show a strong edge response in the study region. Finally, regression analyses revealed three negative (species abundance and three vegetation parameters) and two positive relationships (body mass and two vegetation parameters), suggesting an impact of vegetation structure on M. ravelobensis which may be partly independent of edge effects. CONCLUSIONS: A comparison of our results with previous findings reveals that edge effects are variable in space in a small nocturnal primate from Madagascar. Such an ecological plasticity could be extremely relevant for mitigating species responses to habitat loss and anthropogenic disturbances.


Assuntos
Cheirogaleidae , Animais , Ecossistema , Florestas , Madagáscar , Camundongos , Árvores
5.
Am J Primatol ; 82(4): e23059, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608491

RESUMO

Habitat loss and fragmentation are major ecological forces threatening animal communities across the globe. These issues are especially true in Madagascar, where forest loss is ongoing. We examined the effects of forest fragmentation on the distribution and abundance of sympatric, endemic gray, and golden-brown mouse lemurs (Microcebus murinus and Microcebus ravelobensis), the endemic western tuft-tailed rat (Eliurus myoxinus), and the invasive black rat (Rattus rattus) in two regions in northwestern Madagascar. We used systematic capture procedures in 40 forest fragments and four continuous forest sites which differed in size, shape, and degree of isolation. With a trapping effort of 11,567 trap nights during two dry seasons (2017-2018), we captured 929 individuals (432 M. ravelobensis, 196 M. murinus, 116 E. myoxinus, and 185 R. rattus). We examined the influence of study region, forest type (fragment vs. continuous), forest size, forest shape, the proportion of 50-m forest edge and distance to continuous forest on the abundance and interaction of the four species. Responses to fragmentation differed strongly between species, but no interaction could be detected between the abundance of the different species. Thus competition within and between native and invasive species may not be regulating abundances in these regions. On the contrary, the abundance of M. ravelobensis and E. myoxinus differed significantly between study regions and was negatively affected by fragmentation. In contrast, there was no evidence of an impact of fragmentation on the abundance of M. murinus. Finally, the invasive R. rattus responded positively to the increasing distance to the continuous forest. In conclusion, the response of small Malagasy mammals to forest fragmentation varies largely between species, and fragmentation effects need to be examined at a species-specific level to fully understand their ecological dynamics and complexity.


Assuntos
Cheirogaleidae , Ecossistema , Roedores , Animais , Florestas , Espécies Introduzidas , Madagáscar , Ratos
6.
BMC Ecol ; 18(1): 22, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005645

RESUMO

BACKGROUND: Various factors, such as climate, body size and sociality are often linked to parasitism. This constrains the identification of other determinants driving parasite infections. Here, we investigate for the first time intestinal parasites in two sympatric arboreal primate species, which share similar activity patterns, feeding ecology, body size and sociality, and cope with the same climate conditions, but differ in sleeping site ecology: the Milne-Edward's sportive lemur (Lepilemur edwardsi) and the Western woolly lemur (Avahi occidentalis). Comparison of these two species aimed to test whether differences in sleeping sites are related to differences in parasite infection patterns. Additionally, gender and seasonal factors were taken into account. Animals were radio-collared to record their sleeping site dynamics and to collect fecal samples to assess intestinal parasitism during both the dry and the rainy season. RESULTS: Only low parasite diversity was detected, which is attributable to the strict arboreal lifestyle of these lemurs, limiting their contact with infective parasite stages. L. edwardsi, which sleeps in tree holes and repeatedly uses the same sleeping site, excreted eggs of strongyle and oxyurid nematodes, whereby strongyles always occurred in coinfection with oxyurids. In contrast, A. occidentalis, which sleeps on open branches and frequently changes sleeping sites, only excreted eggs of strongyle nematodes. This difference can be attributed to a potential favorable environment presented by tree holes for infective stages, facilitating parasitic transmission. Additionally, Strongylida in A. occidentalis were only observed in the rainy season, suggesting an arrested development during the dry season in the nematodes' life cycle. Males and females of both lemur species showed the same frequency of parasitism. No differences in body mass of infected and non-infected individuals were observed, indicating that the animals' body condition remains unaffected by the detected gastrointestinal parasites. CONCLUSIONS: The comparison of two primate hosts with a very similar lifestyle suggests an influence of the sleeping site ecology on intestinal parasites. In A. occidentalis there was a clear seasonal difference in strongyle egg excretion. These results improve our understanding of the parasite ecology in these endangered primate species, which may be critical in the light of species conservation.


Assuntos
Ecossistema , Enteropatias Parasitárias/veterinária , Características de História de Vida , Nematoides/fisiologia , Sono , Strepsirhini , Animais , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Lemuridae , Madagáscar/epidemiologia , Prevalência , Estações do Ano , Simpatria
7.
Genes (Basel) ; 14(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37510355

RESUMO

Habitat loss and fragmentation are of concern to conservation biologists worldwide. However, not all organisms are affected equally by these processes; thus, it is important to study the effects of living in fragmented habitats on species that differ in lifestyle and habitat requirements. In this study, we examined the dispersal and connectivity patterns of rodents, one endemic (Eliurus myoxinus) and one invasive (Rattus rattus), in two landscapes containing forest fragments and adjacent continuous forest patches in northwestern Madagascar. We generated genetic (RADseq) data for 66 E. myoxinus and 81 R. rattus individuals to evaluate differences in genetic diversity as well as inbreeding and connectivity in two landscapes. We found higher levels of inbreeding and lower levels of genetic diversity in E. myoxinus compared with R. rattus. We observed related dyads both within and between habitat patches and positive spatial autocorrelation at lower distance classes for both species, with a stronger pattern of spatial autocorrelation in R. rattus. Across each site, we identified contrasting migration rates for each species, but these did not correspond to habitat-matrix dichotomies. The relatively low genetic diversity in the endemic E. myoxinus suggests ecological constraints that require further investigation.


Assuntos
Florestas , Roedores , Ratos , Animais , Roedores/genética , Madagáscar , Ecossistema , Variação Genética/genética
8.
Ecol Evol ; 11(11): 6766-6788, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141255

RESUMO

Deleterious effects of habitat loss and fragmentation on biodiversity have been demonstrated in numerous taxa. Although parasites represent a large part of worldwide biodiversity, they are mostly neglected in this context. We investigated the effects of various anthropogenic environmental changes on gastrointestinal parasite infections in four small mammal hosts inhabiting two landscapes of fragmented dry forest in northwestern Madagascar. Coproscopical examinations were performed on 1,418 fecal samples from 903 individuals of two mouse lemur species, Microcebus murinus (n = 199) and M. ravelobensis (n = 421), and two rodent species, the native Eliurus myoxinus (n = 102) and the invasive Rattus rattus (n = 181). Overall, sixteen parasite morphotypes were detected and significant prevalence differences between host species regarding the most common five parasites may be explained by parasite-host specificity or host behavior, diet, and socioecology. Ten host- and habitat-related ecological variables were evaluated by generalized linear mixed modeling for significant impacts on the prevalence of the most abundant gastrointestinal parasites and on gastrointestinal parasite species richness (GPSR). Forest maturation affected homoxenous parasites (direct life cycle) by increasing Lemuricola, but decreasing Enterobiinae gen. sp. prevalence, while habitat fragmentation and vegetation clearance negatively affected the prevalence of parasites with heterogenic environment (i.e., Strongyloides spp.) or heteroxenous (indirect cycle with intermediate host) cycles, and consequently reduced GPSR. Forest edges and forest degradation likely change abiotic conditions which may reduce habitat suitability for soil-transmitted helminths or required intermediate hosts. The fragility of complex parasite life cycles suggests understudied and potentially severe effects of decreasing habitat quality by fragmentation and degradation on hidden ecological networks that involve parasites. Since parasites can provide indispensable ecological services and ensure stability of ecosystems by modulating animal population dynamics and nutrient pathways, our study underlines the importance of habitat quality and integrity as key aspects of conservation.

9.
Int J Parasitol ; 50(4): 299-313, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32224123

RESUMO

Habitat loss and fragmentation drive the worldwide depletion of biodiversity. Although it is known that anthropogenic disturbances severely affect host and ecosystem integrity, effects on parasites are largely understudied. This study aims to investigate if and how habitat fragmentation affects the composition of ectoparasite communities on small mammalian hosts in two networks of dry deciduous forest fragments in northwestern Madagascar. Forest sites differing in size, proportion of edge habitat and host density were studied in the Ankarafantsika National Park and in the Mariarano region. A total of 924 individuals of two mouse lemur species, Microcebus murinus (n = 200) and Microcebus ravelobensis (n = 426), and two rodent species, endemic Eliurus myoxinus (n = 114) and introduced Rattus rattus (n = 184), were captured to assess ectoparasite infestations. Ectoparasite prevalence and ectoparasite species richness were statistically related to nine ecological variables applying generalized linear mixed models. Hosts harbored ticks (Haemaphysalis microcebi), mites (Schoutedenichia microcebi, Listrophoroides spp., Laelaptidae gen. spp.) and sucking lice (Lemurpediculus spp., Polyplax sp., Hoplopleuridae gen. sp.). Parasite prevalence differed significantly between host species for all detected parasite taxa. Proximity to the forest edge led to a significant reduction in ectoparasites. Parasite-specific edge effects were observed up to a distance of 750 m from the forest edge. The obtained results imply that habitat fragmentation impacts ectoparasite communities, in particular by negatively affecting temporary parasite species. The results are best explained by an interplay of parasite life cycles, responses to changes in abiotic factors induced by edges and host-specific responses to habitat fragmentation. The negative responses of most studied ectoparasite taxa to forest edges and habitat fragmentation demonstrate their ecological vulnerability that may eventually threaten the integrity of ecosystems and potentially impact ectoparasite biodiversity worldwide.


Assuntos
Cheirogaleidae/parasitologia , Ectoparasitoses/epidemiologia , Florestas , Roedores/parasitologia , Animais , Animais Selvagens/parasitologia , Biodiversidade , Monitorização de Parâmetros Ecológicos , Ecossistema , Especificidade de Hospedeiro , Estágios do Ciclo de Vida , Madagáscar/epidemiologia , Ácaros/classificação , Ácaros/parasitologia , Ftirápteros/classificação , Ftirápteros/parasitologia , Prevalência , Carrapatos/classificação , Carrapatos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA