Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39475529

RESUMO

The optimization of hit compounds into drug candidates is a pivotal phase in drug discovery but often hampered by cumbersome manual synthesis of derivatives. While automated organic molecule synthesis has enhanced efficiency, safety, and cost-effectiveness, achieving fully automated multistep synthesis remains a formidable challenge due to issues such as solvent and reagent incompatibilities and the accumulation of side-products. We herein demonstrate an automated solid-phase flow platform for synthesizing α-keto-amides and nitrile peptidomimetics, guided by docking simulations, to identify potent broad-spectrum antiviral leads. A compact parallel synthesizer was built in-house, capable of producing 5 distinct molecules per cycle; 525 reactions could be finished within three months to generate 42 derivatives for a structure-activity relationship (SAR) investigation. Among these, ten derivatives exhibited promising target inhibitory activity (IC50 < 100 nM) including two with antiviral activity (EC50 < 250 nM). The platform, coupled with digital chemical recipe files, offers rapid access to a wide range of peptidomimetics, serving as a valuable reservoir for broad-spectrum antiviral candidates. This automated solid-phase flow synthesis approach expedites the generation of previously difficult complex molecular scaffolds. By integration of SPS-flow synthesis with medicinal chemistry campaign, >10-fold target inhibitory activity was achieved from a small set of derivatives, which indicates the potential to shift the paradigm of drug discovery.

2.
J Am Chem Soc ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37920956

RESUMO

The trifluoromethyl (CF3) group is an essential moiety in medicinal chemistry due to its unique physicochemical properties. While trifluoroacetic acid (TFA) is an inexpensive and easily accessible reagent, its use as a source of CF3 is highly challenging due to its high oxidation potential. In this study, we present a novel electrophotochemical approach that enables the use of TFA as the CF3 source for the selective, catalyst- and oxidant-free trifluoromethylation of (hetero)arenes. Key to our approach is the selective oxidation of TFA over arenes, generating CF3 radicals through oxidative decarboxylation. This strategy enables the sustainable and environmentally-friendly synthesis of CF3-, CF2H- and perfluoroalkyl-containing (hetero)arenes with a broad range of substrates. Importantly, our results demonstrate significantly improved chemoselectivity by light irradiation, opening up new possibilities for the synthetic and medicinal applications of TFA as an ideal yet underutilized CF3 source.

3.
Angew Chem Int Ed Engl ; 62(44): e202310978, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37699857

RESUMO

Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.

4.
J Am Chem Soc ; 144(23): 10570-10581, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35647809

RESUMO

Although heterocyclic hemiboronic acids are represented in several recently approved drugs, many questions remain unanswered regarding the physical properties and reactivity of these boranol (BOH)-containing compounds in aqueous media. Over the past 60 years, studies on the acidic and aromatic character of 10-hydroxy-10,9-boroxarophenanthrene and its boraza analog have been conflicting. In contradiction with the Lewis acidic behavior of arylboronic acids in aqueous conditions, it has been proposed that the central boroheterocyclic ring of these borophenanthroids confers sufficient aromatic character to compel the boranol unit to behave as a Brønsted acid and favor the boron oxy conjugate base, thereby avoiding the disruption of cyclic resonance that would otherwise occur with a tetravalent boronate anion. These questions are addressed with a combination of physical and spectroscopic characterizations, X-ray crystallographic analysis, and computational studies. Although both oxa and aza derivatives are conclusively shown to behave as Lewis acids in aqueous solutions, according to pKa measurements and MO and NICS calculations, only the boraza derivatives possess an appreciable aromatic character within the boroheterocyclic ring. For the first time, the possibility of dynamic chemical exchange via a reversible hydrolysis of the endocyclic B-heteroatom bond was examined using VT and EXSY NMR with suitable probe compounds. Whereas the boraza analog is static at neutral pH, its oxa analog undergoes a rapid hydrolytic ring opening-closing equilibrium with the transient boronic acid. Altogether, this study will guide the methodical application of these heterocycles as reaction catalysts, in bioconjugation, and as new-drug chemotypes and bioisosteres of pharmaceutically important classes of heterocycles.


Assuntos
Ácidos , Ácidos Borônicos , Ácidos Borônicos/química , Cristalografia por Raios X , Hidrólise , Espectroscopia de Ressonância Magnética , Água
5.
J Am Chem Soc ; 143(11): 4162-4167, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719442

RESUMO

Enantioselective desymmetrization by direct monofunctionalization of prochiral diols is a powerful strategy to prepare valuable synthetic intermediates in high optical purity. Boron acids can activate diols toward nucleophilic additions; however, the design of stable chiral catalysts remains a challenge and highlights the need to identify new chemotypes for this purpose. Herein, the discovery and optimization of a bench-stable chiral 9-hydroxy-9,10-boroxarophenanthrene catalyst is described and applied in the highly enantioselective desymmetrization of 2-aryl-1,3-diols using benzylic electrophiles under operationally simple, ambient conditions. Nucleophilic activation and discrimination of the enantiotopic hydroxy groups on the diol substrate occurs via a defined chairlike six-membered anionic complex with the hemiboronic heterocycle. The optimal binaphthyl-based catalyst 1g features a large aryloxytrityl group to effectively shield one of the two prochiral hydroxy groups on the diol complex, whereas a strategically placed "methyl blocker" on the boroxarophenanthrene unit mitigates the deleterious effect of a competing conformation of the complexed diol that compromised the overall efficiency of the desymmetrization process. This methodology affords monoalkylated products in enantiomeric ratios equal or over 95:5 for a wide range of 1,3-propanediols with various 2-aryl/heteroaryl groups.


Assuntos
Ácidos Borônicos/química , Éteres/síntese química , Propilenoglicóis/química , Alquilação , Catálise , Éteres/química , Conformação Molecular , Estereoisomerismo
6.
J Am Chem Soc ; 143(27): 10143-10156, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34165966

RESUMO

Boron-containing heterocycles are important in a variety of applications from drug discovery to materials science; therefore a clear understanding of their structure and reactivity is desirable to optimize these functions. Although the boranol (B-OH) unit of boronic acids behaves as a Lewis acid to form a tetravalent trihydroxyborate conjugate base, it has been proposed that pseudoaromatic hemiboronic acids may possess sufficient aromatic character to act as Brønsted acids and form a boron oxy conjugate base, thereby avoiding the disruption of ring aromaticity that would occur with a tetravalent boronate anion. Until now no firm evidence existed to ascertain the structure of the conjugate base and the aromatic character of the boron-containing ring of hemiboronic "naphthoid" isosteres. Here, these questions are addressed with a combination of experimental, spectroscopic, X-ray crystallographic, and computational studies of a series of model benzoxazaborine and benzodiazaborine naphthoids. Although these hemiboronic heterocycles are unambiguously shown to behave as Lewis acids in aqueous solutions, boraza derivatives possess partial aromaticity provided their nitrogen lone electron pair is sufficiently available to participate in extended delocalization. As demonstrated by dynamic exchange and crossover experiments, these heterocycles are stable in neutral aqueous medium, and their measured pKa values are consistent with the ability of the endocyclic heteroatom substituent to stabilize a partial negative charge in the conjugate base. Altogether, this study corrects previous inaccuracies and provides conclusions regarding the properties of these compounds that are important toward the methodical application of hemiboronic and other boron heterocycles in catalysis, bioconjugation, and medicinal chemistry.

7.
Org Biomol Chem ; 17(24): 6007-6014, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31166346

RESUMO

A general and efficient boronic acid catalyzed Friedel-Crafts alkylation of arenes with benzylic alcohols was previously developed for the construction of unsymmetrical diarylmethane products (X. Mo, J. Yakiwchuk, J. Dansereau, J. A. McCubbin and D. G. Hall, J. Am. Chem. Soc., 2015, 137, 9694). Highly electron-deficient benzylic alcohols, however, were ineffective coupling partners due to the increased difficulty of C-O bond ionization. Herein, we report the use of perfluoropinacol as an effective co-catalyst to improve the reactivity of a boronic acid catalyst in the Friedel-Crafts benzylations of electronically deactivated primary and secondary benzylic alcohols. According to spectroscopic studies, it is believed that perfluoropinacol condenses with the arylboronic acid catalyst to form a highly electrophilic and Lewis acidic boronic ester. This in situ formed species enables a more facile ionization of the benzylic alcohols likely through a mode of activation promoted by a Lewis acid assisted hydronium Brønsted acid generated from the interactions of the transient boronic ester with hexafluoroisopropanol solvent and water.

8.
J Am Chem Soc ; 140(15): 5264-5271, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29565116

RESUMO

Catalytic activation of hydroxyl functionalities is of great interest for the production of pharmaceuticals and commodity chemicals. Here, 2-alkoxycarbonyl- and 2-phenoxycarbonyl-phenylboronic acid were identified as efficient catalysts for the direct and chemoselective activation of oxime N-OH bonds in the Beckmann rearrangement. This classical organic reaction provides a unique approach to prepare functionalized amide products that may be difficult to access using traditional amide coupling between carboxylic acids and amines. Using only 5 mol % of boronic acid catalyst and perfluoropinacol as an additive in a polar solvent mixture, the operationally simple protocol features mild conditions, a broad substrate scope, and a high functional group tolerance. A wide variety of diaryl, aryl-alkyl, heteroaryl-alkyl, and dialkyl oximes react under ambient conditions to afford high yields of amide products. Free alcohols, amides, carboxyesters, and many other functionalities are compatible with the reaction conditions. Investigations of the catalytic cycle revealed a novel boron-induced oxime transesterification providing an acyl oxime intermediate involved in a fully catalytic nonself-propagating Beckmann rearrangement mechanism. The acyl oxime intermediate was prepared independently and was subjected to the reaction conditions. It was found to be self-sufficient; it reacts rapidly, unimolecularly without the need for free oxime. A series of control experiments and 18O labeling studies support a true catalytic pathway involving an ionic transition structure with an active and essential role for the boronyl moiety in both steps of transesterification and rearrangement. According to 11B NMR spectroscopic studies, the additive perfluoropinacol provides a transient, electrophilic boronic ester that is thought to serve as an internal Lewis acid to activate the ortho-carboxyester and accelerate the initial, rate-limiting step of transesterification between the precatalyst and the oxime substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA