Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chem Rev ; 121(4): 2648-2712, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33524257

RESUMO

The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.


Assuntos
Cobre/química , Cobre/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Cátions Bivalentes , Humanos , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Domínios Proteicos
2.
Molecules ; 28(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903402

RESUMO

Antimicrobial peptides (AMPs) are essential components of innate immunity across all species. AMPs have become the focus of attention in recent years, as scientists are addressing antibiotic resistance, a public health crisis that has reached epidemic proportions. This family of peptides represents a promising alternative to current antibiotics due to their broad-spectrum antimicrobial activity and tendency to avoid resistance development. A subfamily of AMPs interacts with metal ions to potentiate antimicrobial effectiveness, and, as such, they have been termed metalloAMPs. In this work, we review the scientific literature on metalloAMPs that enhance their antimicrobial efficacy when combined with the essential metal ion zinc(II). Beyond the role played by Zn(II) as a cofactor in different systems, it is well-known that this metal ion plays an important role in innate immunity. Here, we classify the different types of synergistic interactions between AMPs and Zn(II) into three distinct classes. By better understanding how each class of metalloAMPs uses Zn(II) to potentiate its activity, researchers can begin to exploit these interactions in the development of new antimicrobial agents and accelerate their use as therapeutics.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Zinco , Antibacterianos
3.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744823

RESUMO

We report the first total synthesis of 5-phenyl preacinetobactin and its characterization. The route was developed for the synthesis of preacinetobactin, the siderophore critical to the Gram-negative pathogen A. baumannii. It leverages a C5-substituted benzaldehyde as a key starting material and should enable the synthesis of similar analogs. 5-Phenyl preacinetobactin binds iron in a manner analogous to the natural siderophore, but it did not rescue growth in a strain of A. baumannii unable to produce preacinetobactin.


Assuntos
Acinetobacter baumannii , Sideróforos , Acinetobacter baumannii/metabolismo , Imidazóis/metabolismo , Ferro/metabolismo , Oxazóis/metabolismo , Sideróforos/metabolismo
4.
Chembiochem ; 22(9): 1646-1655, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33428273

RESUMO

Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Peptídeos Antimicrobianos/química , Fibrose Cística/microbiologia , Fibrose Cística/patologia , DNA Ambiental/química , Humanos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo
5.
Inorg Chem ; 60(6): 3572-3584, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33616393

RESUMO

The atomic-level tunability of molecular structures is a compelling reason to develop homogeneous catalysts for challenging reactions such as the electrochemical reduction of carbon dioxide to valuable C1-Cn products. Of particular interest is methane, the largest component of natural gas. Herein, we report a series of three isomeric rhenium tricarbonyl complexes coordinated by the asymmetric diimine ligands 2-(isoquinolin-1-yl)-4,5-dihydrooxazole (quin-1-oxa), 2-(quinolin-2-yl)-4,5-dihydrooxazole (quin-2-oxa), and 2-(isoquinolin-3-yl)-4,5-dihydrooxazole (quin-3-oxa) that catalyze the reduction of CO2 to carbon monoxide and methane, albeit the latter with a low efficiency. To our knowledge, these complexes are the first examples of rhenium(I) catalysts capable of converting carbon dioxide into methane. Re(quin-1-oxa)(CO)3Cl (1), Re(quin-2-oxa)(CO)3Cl (2), and Re(quin-3-oxa)(CO)3Cl (3) were characterized and studied using a variety of electrochemical and spectroscopic techniques. In bulk electrolysis experiments, the three complexes reduce CO2 to CO and CH4. When the controlled-potential electrolysis experiments are performed at -2.5 V (vs Fc+/0) and in the presence of the Brønsted acid 2,2,2-trifluoroethanol, methane is produced with turnover numbers that range from 1.3 to 1.8. Isotope labeling experiments using 13CO2 atmosphere produce 13CH4 (m/z = 17) confirming that methane originates from CO2 reduction. Theoretical calculations are performed to investigate the mechanistic aspects of the 8e-/8H+ reduction of CO2 to CH4. A ligand-assisted pathway is proposed to be an efficient pathway in the formation of CH4. Delocalization of the electron density on the (iso)quinoline moiety upon reduction stabilizes the key carbonyl intermediate leading to additional reactivity of this ligand. These results should aid the development of more robust catalytic systems that produce CH4 from CO2.

6.
Inorg Chem ; 60(2): 692-704, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356209

RESUMO

New cis-(1,2-azole)-aquo bis(2,2'-bipyridyl)ruthenium(II) (1,2-azole (az*H) = pzH (pyrazole), dmpzH (3,5-dimethylpyrazole), and indzH (indazole)) complexes are synthesized via chlorido abstraction from cis-[Ru(bipy)2Cl(az*H)]OTf. The latter are obtained from cis-[Ru(bipy)2Cl2] after the subsequent coordination of the 1,2-azole. All the compounds are characterized by 1H, 13C, 15N NMR spectroscopy as well as IR spectroscopy. Two chlorido complexes (pzH and indzH) and two aquo complexes (indzH and dmpzH) are also characterized by X-ray diffraction. Photophysical and electrochemical studies were carried out on all the complexes. The photophysical data support the phosphorescence of the complexes. The electrochemical behavior of all the complexes in an Ar atmosphere indicate that the oxidation processes assigned to Ru(II) → Ru(III) occurs at higher potentials in the aquo complexes. The reduction processes under Ar lead to several waves, indicating that the complexes undergo successive electron-transfer reductions that are centered in the bipy ligands. The first electron reduction is reversible. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/ip(Ar)] ranged from 2.9 to 10.8. Controlled potential electrolysis of the chlorido and aquo complexes affords CO and formic acid, with the latter as the major product after 2 h. Photocatalytic experiments in MeCN with [Ru(bipy)3]Cl2 as the photosensitizer and TEOA as the electron donor, which were irradiated with >300 nm light for 24 h, led to CO and HCOOH as the main reduction products, achieving a combined turnover number (TONCO+HCOO-) as high as 107 for 2c after 24 h of irradiation.

7.
Inorg Chem ; 59(20): 14866-14870, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32993282

RESUMO

Antimicrobial photodynamic therapy (APDT) has gained increased attention because of its broad spectrum activity and lower likelihood to elicit bacterial resistance. Although many photosensitizers excel at eradicating Gram-positive bacterial infections, they are generally less potent when utilized against Gram-negative bacteria. We hypothesized that conjugating the DNA-targeting, antimicrobial peptide buforin II to a metal-based photosensitizer would result in a potent APDT agent. Herein, we present the synthesis and characterization of a buforin II-[Ru(bpy)3]2+ bioconjugate (1). The submicromolar activity of 1 against the multidrug-resistant strains Escherichia coli AR 0114 and Acinetobacter baumannii Naval-17 indicates strong synergy between the ruthenium complex and buforin II. Our mechanistic studies point to an increased rate of DNA damage by 1 compared to [Ru(bpy)3]2+. These results suggest that conjugating metal complexes to antimicrobial peptides can lead to potent antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Proteínas/farmacologia , Antibacterianos/síntese química , Antibacterianos/efeitos da radiação , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , DNA Super-Helicoidal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Proteínas/síntese química , Rutênio/química , Rutênio/efeitos da radiação , Oxigênio Singlete/metabolismo
8.
Biochemistry ; 58(36): 3802-3812, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31448597

RESUMO

Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed. Here, we engineered amino-terminal Cu(II) and Ni(II) (ATCUN) binding motifs, which can enhance biological function, into the native sequence of two AMPs, CM15 and citropin1.1. The incorporation of metal-binding motifs modulated the antimicrobial activity of synthetic peptides against a panel of carbapenem-resistant enterococci (CRE) bacteria, including carbapenem-resistant Klebsiella pneumoniae (KpC+) and Escherichia coli (KpC+). Activity modulation depended on the type of ATCUN variant utilized. Membrane permeability assays revealed that the in silico selected lead template, CM15, and its ATCUN analogs increased bacterial cell death. Mass spectrometry, circular dichroism, and molecular dynamics simulations indicated that coordinating ATCUN derivatives with Cu(II) ions did not increase the helical tendencies of the AMPs. CM15 ATCUN variants, when combined with Meropenem, streptomycin, or chloramphenicol, showed synergistic effects against E. coli (KpC+ 1812446) biofilms. Motif addition also reduced the hemolytic activity of the wild-type AMP and improved the survival rate of mice in a systemic infection model. The dependence of these bioactivities on the particular amino acids of the ATCUN motif highlights the possible use of size, charge, and hydrophobicity to fine-tune AMP biological function. Our data indicate that incorporating metal-binding motifs into peptide sequences leads to synthetic variants with modified biological properties. These principles may be applied to augment the activities of other peptide sequences.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Proteínas de Transporte/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Quelantes/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Cobre/química , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Hemólise/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas , Pseudomonas aeruginosa/efeitos dos fármacos
9.
J Am Chem Soc ; 141(10): 4252-4256, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30807129

RESUMO

We report polymer-promoted cooperative catalysis of Cu for oxygen activation. A series of random copolymers containing dipicolylamine as binding motifs are designed to coordinate type-3 Cu sites. The Cu-copolymers show a 6-8-fold activity enhancement, compared to the molecular complex of Cu with an identical coordination site. Michaelis-Menten analysis demonstrates that the kinetic enhancement results from flexible polymer-promoted cooperative catalysis among multi-Cu sites despite the imposed thermodynamic barrier. These observations provide guidance for the bioinspired design of metallopolymers as soluble catalysts with high activity.

10.
Biochemistry ; 56(10): 1403-1414, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28226206

RESUMO

Tunicates have been used as primitive models for understanding cell-mediated and humoral immunity. Clavanin A (ClavA) is one member of a family of antimicrobial peptides produced by the solitary tunicate Styela clava. In this work, we demonstrate that ClavA utilizes Zn2+ ions to potentiate its antimicrobial activity not only by reducing the concentration at which the peptide inhibits the growth of bacteria but also by increasing the rate of killing. Membrane depolarization, ß-galactosidase leakage, and potassium leakage assays indicate that ClavA is membrane active, forms small pores, but induces cell death by targeting an intracellular component. ClavA and ClavA-Zn2+ added to Escherichia coli and imaged by confocal microscopy translocate across the cell membrane. E. coli mutants lacking the functional Zn2+ import system are less susceptible to ClavA, suggesting that the synergistic activity between ClavA and Zn2+ has a cytoplasmic target, which is further supported by its nucleolytic activity. Overall, these studies identify a remarkable new mechanism by which zinc contributes to the immune response in the tunicate S. clava.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas Sanguíneas/imunologia , Escherichia coli/efeitos dos fármacos , Sistema Imunitário , Urocordados/imunologia , Zinco/farmacologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas Sanguíneas/biossíntese , Proteínas Sanguíneas/síntese química , Proteínas Sanguíneas/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoplasma/química , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Sinergismo Farmacológico , Escherichia coli/química , Escherichia coli/metabolismo , Expressão Gênica , Hemócitos/química , Hemócitos/imunologia , Testes de Sensibilidade Microbiana , Potássio/metabolismo , Ligação Proteica , Técnicas de Síntese em Fase Sólida , Urocordados/genética , Urocordados/microbiologia , Zinco/metabolismo , beta-Galactosidase/metabolismo
11.
Inorg Chem ; 56(17): 10290-10297, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28800224

RESUMO

A heterogeneous copper oxide supported on mesoporous manganese oxide (meso Cu/MnOx) was explored for Ullmann-type cross-coupling reactions. An inverse micelle-templated evaporation-induced self-assembly method with in situ addition of copper was adopted to synthesize the mesoporous catalyst. Broad substrate scope and excellent functional group tolerability in C-O, C-N, and C-S bond formation reactions were observed using the optimized reaction conditions. The catalytic protocol was ligand free, and the catalyst was reusable without any significant loss of activity. The kinetic and Hammett analyses provided evidence for oxidative addition to a Cu(I) reaction center followed by nucleophilic addition and reductive elimination at the active copper oxide surface. Rate acceleration was observed for aryl halides with electron-withdrawing groups. The Hammett analysis determined ρ = +1.0, indicative of an oxidative addition, whereas the electronic effect in the phenol ring (ρ = -2.9) was indicative of coordination to a metal ion. Theoretically, the oxidative addition of the aryl halides is assisted by the ligand environment of the copper center. Relevant mechanistic implications are discussed on the basis of the experimental and computational results.

12.
Inorg Chem ; 56(6): 3214-3226, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28277679

RESUMO

A series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO2 reduction ability. The reported complexes are of the type Re(N-N)(CO)3Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO2 by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO2 reduction by 1 in acetonitrile using density functional theory (DFT) supports the C-O bond cleavage step being the rate-determining step (RDS) (ΔG⧧ = 27.2 kcal mol-1). The dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C-O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO)3Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (icat/ip)2, up to 7 times larger than that of I.

13.
Biochem Biophys Res Commun ; 456(1): 446-51, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25482446

RESUMO

Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Cobre/química , Espécies Reativas de Oxigênio/metabolismo , Venenos de Vespas/química , Motivos de Aminoácidos , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Peroxidação de Lipídeos , Microscopia Confocal , Estresse Oxidativo , beta-Galactosidase/metabolismo
14.
RSC Med Chem ; 15(6): 2160-2164, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911167

RESUMO

Finding new antibiotics that can act synergistically with each other offers many benefits such as lower dosages used for each drug, improved pathogen clearance, and ability to act against multi-drug resistant strains. In this study, six peptides isolated from the tunicate Styela clava were evaluated for their synergistic interaction using the checkerboard assay and the time kill kinetics assay. Using two different tests, we report synergy between clavanin D and clavaspirin in both tests and synergy between clavanin A and B only in the checkerboard test when used against the multidrug resistant E. cloacae 0136. This work demonstrates the possible cooperativity between homologous AMPs from a single organism and the advantage of using two susceptibility tests instead of one when testing synergistic combinations.

15.
Dalton Trans ; 52(45): 16974-16983, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933188

RESUMO

New 1,2-azolylamidino complexes fac-[RuCl(DMSO)3(NHC(R)az*-κ2N,N)]OTf [R = Me (2), Ph (3); az* = pz (pyrazolyl, a), indz (indazolyl, b)] are synthesized via chloride abstraction from their corresponding precursors cis,fac-[RuCl2(DMSO)3(az*H)] (1) after subsequent base-catalyzed coupling of the appropriate nitrile with the 1,2-azole previously coordinated. All the compounds are characterized by 1H NMR, 13C NMR and IR spectroscopy. Those derived from MeCN are also characterized by X-ray diffraction. Electrochemical studies showed several reduction waves in the range of -1.5 to -3 V. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalytic reduction. The catalytic activity expressed as [icat(CO2)/ip(Ar)] ranged from 1.7 to 3.7 for the 1,2-azolylamidino complexes at voltages of ca. -2.7 to -3 V vs. ferrocene/ferrocenium. Controlled potential electrolysis showed rapid decomposition of the Ru catalysts. Photocatalytic CO2 reduction experiments using compounds 1b, 2b and 3b carried out in a CO2-saturated MeCN/TEOA (4 : 1 v/v) solution containing a mixture of the catalyst and [Ru(bipy)3]2+ as the photosensitizer under continuous irradiation (light intensity of 150 mW cm-2 at 25 °C, λ > 300 nm) show that compounds 1b, 2b and 3b allowed CO2 reduction catalysis, producing CO and trace amounts of formate. The combined turnover number for the production of formate and CO is ca. 100 after 8 h and follows the order 1b < 2b ≈ 3b.

16.
J Am Chem Soc ; 134(37): 15371-86, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22900971

RESUMO

Molecular oxygen is produced from water via the following reaction of potassium ferrate (K(2)FeO(4)) in acidic solution: 4[H(3)Fe(VI)O(4)](+) + 8H(3)O(+) → 4Fe(3+) + 3O(2) + 18H(2)O. This study focuses upon the mechanism by which the O-O bond is formed. Stopped-flow kinetics at variable acidities in H(2)O and D(2)O are used to complement the analysis of competitive oxygen-18 kinetic isotope effects ((18)O KIEs) upon consumption of natural abundance water. The derived (18)O KIEs provide insights concerning the identity of the transition state. Water attack (WA) and oxo-coupling (OC) transition states were evaluated for various reactions of monomeric and dimeric ferrates using a calibrated density functional theory protocol. Vibrational frequencies from optimized isotopic structures are used here to predict (18)O KIEs for comparison to experimental values determined using an established competitive isotope-fractionation method. The high level of agreement between experimental and theoretic isotope effects points to an intramolecular OC mechanism within a di-iron(VI) intermediate, consistent with the analysis of the reaction kinetics. Alternative mechanisms are excluded based on insurmountably high free energy barriers and disagreement with calculated (18)O KIEs.


Assuntos
Ferro/química , Oxigênio/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Termodinâmica
17.
Inorg Chem ; 51(8): 4722-9, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22462500

RESUMO

Oxygen isotope fractionation is applied for the first time to probe the catalytic oxidation of water using a widely studied ruthenium complex, [Ru(II)(tpy)(bpy)(H(2)O)](ClO(4))(2) (bpy = 2,2'-bipyridine; tpy = 2,2';6",2"-terpyridine). Competitive oxygen-18 kinetic isotope effects ((18)O KIEs) derived from the ratio of (16,16)O(2) to (16,18)O(2) formed from natural-abundance water vary from 1.0132 ± 0.0005 to 1.0312 ± 0.0004. Experiments were conducted with cerium(IV) salts at low pH and a photogenerated ruthenium(III) tris(bipyridine) complex at neutral pH as the oxidants. The results are interpreted within the context of catalytic mechanisms using an adiabatic formalism to ensure the highest barriers for electron-transfer and proton-coupled electron-transfer steps. In view of these contributions, O-O bond formation is predicted to be irreversible and turnover-limiting. The reaction with the largest (18)O KIE exhibits the greatest degree of O-O coupling in the transition state. Smaller (18)O KIEs are observed due to multiple rate-limiting steps or transition-state structures which do not involve significant O-O motion. These findings provide benchmarks for systematizing mechanisms of O-O bond formation, the critical step in water oxidation by natural and synthetic catalysts. In addition, the measurements introduce a new tool for calibrating computational studies using relevant experimental data.

18.
Methods Enzymol ; 663: 99-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168799

RESUMO

Antimicrobial peptides will be an essential component in combating the escalating issue of antibiotic resistance. Identifying synergistic combinations of two or more substances will increase the value of these peptides further. Several potential pitfalls in conducting synergy testing with peptides are discussed in detail. As case studies, we describe observations of AMP synergy with peptides, antibiotics, and metal ions as well as some of the mechanistic details that have been uncovered. The Bliss and Loewe models for synergy are presented prior to recommending protocols for conducting checkerboard, minimal inhibitory concentration, and time-kill assays. Establishing mechanisms of action and exploring the potential for resistance will be crucial to translate these studies into the clinic.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Biologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
19.
Biochemistry ; 50(34): 7375-89, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21790181

RESUMO

Rice α-(di)oxygenase mediates the regio- and stereospecific oxidation of fatty acids using a persistent catalytic tyrosyl radical. Experiments conducted in the physiological O(2) concentration range, where initial hydrogen atom abstraction from the fatty acid occurs in a kinetically reversible manner, are described. Our findings indicate that O(2)-trapping of an α-carbon radical is likely to reversibly precede reduction of a 2-(R)-peroxyl radical intermediate in the first irreversible step. A mechanism of concerted proton-coupled electron transfer is proposed on the basis of natural abundance oxygen-18 kinetic isotope effects, deuterium kinetic isotope effects, and calculations at the density functional level of theory, which predict a polarized transition state in which electron transfer is advanced to a greater extent than proton transfer. The approach outlined should be useful for identifying mechanisms of concerted proton-coupled electron transfer in a variety of oxygen-utilizing enzymes.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Ácidos Graxos/metabolismo , Heme , Oxigênio/metabolismo , Teoria Quântica , Tirosina , Ligação Competitiva , Difusão , Transporte de Elétrons , Ácidos Graxos/química , Radicais Livres , Cinética , Modelos Moleculares , Oryza/enzimologia , Isótopos de Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica , Solventes/química , Estereoisomerismo , Especificidade por Substrato , Viscosidade
20.
J Am Chem Soc ; 133(2): 227-38, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21166399

RESUMO

The steady-state catalytic mechanism of a fatty acid α-(di)oxygenase is examined, revealing that a persistent tyrosyl radical (Tyr379(•)) effects O(2) insertion into C(α)-H bonds of fatty acids. The initiating C(α)-H homolysis step is characterized by apparent rate constants and deuterium kinetic isotope effects (KIEs) that increase hyperbolically upon raising the concentration of O(2). These results are consistent with H(•) tunneling, transitioning from a reversible to an irreversible regime. The limiting deuterium KIEs increase from ∼30 to 120 as the fatty acid chain is shortened from that of the native substrate. In addition, activation barriers increase in a manner that reflects decreased fatty acid binding affinities. Anaerobic isotope exchange experiments provide compelling evidence that Tyr379(•) initiates catalysis by H(•) abstraction. C(α)-H homolysis is kinetically driven by O(2) trapping of the α-carbon radical and reduction of a putative peroxyl radical intermediate to a 2(R)-hydroperoxide product. These findings add to a body of work which establishes large-scale hydrogen tunneling in proteins. This particular example is novel because it involves a protein-derived amino acid radical.


Assuntos
Dioxigenases/metabolismo , Ácidos Graxos/metabolismo , Heme/metabolismo , Tirosina/metabolismo , Biocatálise , Dioxigenases/química , Ativação Enzimática , Ácidos Graxos/química , Radicais Livres/química , Radicais Livres/metabolismo , Heme/química , Cinética , Estrutura Molecular , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA