Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1102286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692531

RESUMO

Our understanding of the complex mechanisms that power biological intelligence has been greatly enhanced through the explosive growth of large-scale neuroscience and robotics simulation tools that are used by the research community to perform previously infeasible experiments, such as the simulation of the neocortex's circuitry. Nevertheless, simulation falls far from being directly applicable to biorobots due to the large discrepancy between the simulated and the real world. A possible solution for this problem is the further enhancement of existing simulation tools for robotics, AI and neuroscience with multi-physics capabilities. Previously infeasible or difficult to simulate scenarios, such as robots swimming on the water surface, interacting with soft materials, walking on granular materials etc., would be rendered possible within a multi-physics simulation environment designed for robotics. In combination with multi-physics simulation, large-scale simulation tools that integrate multiple simulation modules in a closed-loop manner help address fundamental questions around the organization of neural circuits and the interplay between the brain, body and environment. We analyze existing designs for large-scale simulation running on cloud and HPC infrastructure as well as their shortcomings. Based on this analysis we propose a next-gen modular architecture design based on multi-physics engines, that we believe would greatly benefit biorobotics and AI.

2.
Front Syst Neurosci ; 14: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733210

RESUMO

Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.

3.
Front Neurorobot ; 13: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555117

RESUMO

One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions. Different biologically plausible cerebellar models are available in literature and have been employed for motor learning and control of simplified objects. We built the canonical cerebellar microcircuit by combining machine learning and computational neuroscience techniques. The control system is composed of the adaptive cerebellar module and a classic control method; their combination allows a fast adaptive learning and robust control of the robotic movements when external disturbances appear. The control structure is built offline, but the dynamic parameters are learned during an online-phase training. The aforementioned adaptive control system has been tested in the Neuro-robotics Platform with the virtual humanoid robot iCub. In the experiment, the robot iCub has to balance with the hand a table with a ball running on it. In contrast with previous attempts of solving this task, the proposed neural controller resulted able to quickly adapt when the internal and external conditions change. Our bio-inspired and flexible control architecture can be applied to different robotic configurations without an excessive tuning of the parameters or customization. The cerebellum-based control system is indeed able to deal with changing dynamics and interactions with the environment. Important insights regarding the relationship between the bio-inspired control system functioning and the complexity of the task to be performed are obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA