Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Genes Dev ; 37(19-20): 865-882, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852796

RESUMO

The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.


Assuntos
Histona Acetiltransferases , Lisina , Animais , Humanos , Camundongos , Acetilação , Adesão Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Histona Acetiltransferases/metabolismo , Lisina/metabolismo
2.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434505

RESUMO

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Antineoplásicos/farmacologia , Glutaratos/farmacologia , Glicólise/genética , Lactato Desidrogenases/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosfofrutoquinase-1 Tipo C/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Células K562 , Lactato Desidrogenases/antagonistas & inibidores , Lactato Desidrogenases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação Oxidativa/efeitos dos fármacos , Fosfofrutoquinase-1 Tipo C/antagonistas & inibidores , Fosfofrutoquinase-1 Tipo C/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Proc Natl Acad Sci U S A ; 120(18): e2221352120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094160

RESUMO

T cell activation stimulates substantially increased protein synthesis activity to accumulate sufficient biomass for cell proliferation. The protein synthesis is fueled by the amino acids transported from the environment. Steroid nuclear receptor coactivator 2 (SRC2) is a member of a family of transcription coactivators. Here, we show that SRC2 recruited by c-Myc enhances CD4+ T cell activation to stimulate immune responses via upregulation of amino acid transporter Slc7a5. Mice deficient of SRC2 in T cells (SRC2fl/fl/CD4Cre) are resistant to the induction of experimental autoimmune encephalomyelitis (EAE) and susceptible to Citrobacter rodentium (C. rodentium) infection. Adoptive transfer of naive CD4+ T cells from SRC2fl/fl/CD4Cre mice fails to elicit EAE and colitis in Rag1/ recipients. Further, CD4+ T cells from SRC2fl/fl/CD4Cre mice display defective T cell proliferation, cytokine production, and differentiation both in vitro and in vivo. Mechanically, SRC2 functions as a coactivator to work together with c-Myc to stimulate the expression of amino acid transporter Slc7a5 required for T cell activation. Slc7a5 fails to be up-regulated in CD4+ T cells from SRC2fl/fl/CD4Cre mice, and forced expression of Slc7a5 rescues proliferation, cytokine production, and the ability of SRC2fl/fl/CD4Cre CD4+ T cells to induce EAE. Therefore, SRC2 is essential for CD4+ T cell activation and, thus, a potential drug target for controlling CD4+ T cell-mediated autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T , Animais , Camundongos , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 2 de Receptor Nuclear/metabolismo , Regulação para Cima
4.
Br J Cancer ; 129(3): 444-454, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386138

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS: In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS: The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION: In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Transporte , Arginina/metabolismo , Ribossomos , Linhagem Celular Tumoral
5.
FASEB J ; 36(3): e22201, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35137449

RESUMO

Oncogene activation, massive proliferation, and increased nutrient demands often result in nutrient and oxygen deprivation in solid tumors including breast cancer (BC), leading to the induction of oxidative stress and endoplasmic reticulum (ER) stress, and subsequently triggering integrated stress response (ISR). To elucidate the role of long non-coding RNAs (lncRNAs) in the ISR of BC, we performed transcriptome analyses and identified a lncRNA, UBA6-AS1, which was upregulated upon amino acid deprivation and ER stress. UBA6-AS1 was preferentially induced in triple-negative BC (TNBC) cells deprived of arginine or glutamine, two critical amino acids required for cancer cell growth, or treated with ER stress inducers. Mechanistically, UBA6-AS1 was regulated through the GCN2/eIF2α/ATF4 pathway, one of the major routes mediating ISR in amino acid sensing. In addition, both in vitro and in vivo assays indicated that UBA6-AS1 promoted TNBC cell survival when cells encountered metabolic stress, implicating a regulatory role of UBA6-AS1 in response to intratumoral metabolic stress during tumor progression. Moreover, PARP1 expression and activity were positively regulated by the GCN2/UBA6-AS1 axis upon amino acid deprivation. In conclusion, our data suggest that UBA6-AS1 is a novel lncRNA regulating ISR upon metabolic stress induction to promote TNBC cell survival. Furthermore, the GCN2-ATF4 axis is important for UBA6-AS1 induction to enhance PARP1 activity and could serve as a marker for the susceptibility of PARP inhibitors in TNBC.


Assuntos
Aminoácidos/deficiência , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Serina-Treonina Quinases/genética , RNA Antissenso , Neoplasias de Mama Triplo Negativas/genética
6.
J Biomed Sci ; 30(1): 32, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217939

RESUMO

BACKGROUND: Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS: We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS: Our research identified eIF2α, eIF2ß, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS: Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.


Assuntos
Arginina , Fator de Iniciação 2 em Eucariotos , Heme Oxigenase-1 , Antioxidantes , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Heme Oxigenase-1/genética , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Humanos
7.
Prostate ; 80(2): 162-172, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769890

RESUMO

BACKGROUND: Prostate cancer (PC) remains a leading cause of cancer mortality and the most successful chemopreventative and treatment strategies for PC come from targeting the androgen receptor (AR). Although AR plays a key role, it is likely that other molecular pathways also contribute to PC, making it essential to identify and develop drugs against novel targets. Recent studies have identified peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor that regulates fatty acid (FA) metabolism, as a novel target in PC, and suggest that inhibitors of PPARγ could be used to treat existing disease. We hypothesized that PPARγ acts through AR-dependent and independent mechanisms to control PC development and growth and that PPARγ inhibition is a viable PC treatment strategy. METHODS: Immunohistochemistry was used to determine expression of PPARÒ¯ in a cohort of patients with PC. Standard molecular techniques were used to investigate the PPARÒ¯ signaling in PC cells as well a xenograft mouse model to test PPARÒ¯ inhibition in vivo. Kaplan-Meier curves were created using cBioportal. RESULTS: We confirmed the expression of PPARÒ¯ in human PC. We then showed that small molecule inhibition of PPARγ decreases the growth of AR-positive and -negative PC cells in vitro and that T0070907, a potent PPARγ antagonist, significantly decreased the growth of human PC xenografts in nude mice. We found that PPARγ antagonists or small interfering RNA (siRNA) do not affect mitochondrial activity nor do they cause apoptosis; instead, they arrest the cell cycle. In AR-positive PC cells, antagonists and siRNAs reduce AR transcript and protein levels, which could contribute to growth inhibition. AR-independent effects on growth appear to be mediated by effects on FA metabolism as the specific FASN inhibitor, Fasnall, inhibited PC cell growth but did not have an additive effect when combined with PPARγ antagonists. Patients with increased PPARÒ¯ target gene expression, but not alterations in PPARÒ¯ itself, were found to have significantly worse overall survival. CONCLUSIONS: Having elucidated the direct cancer cell effects of PPARγ inhibition, our studies have helped to determine the role of PPARγ in PC growth, and support the hypothesis that PPARγ inhibition is an effective strategy for PC treatment.


Assuntos
PPAR gama/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Animais , Benzamidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ácidos Graxos/biossíntese , Humanos , Masculino , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , PPAR gama/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Piridinas/farmacologia , Receptores Androgênicos/genética , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Pharm Res ; 37(2): 21, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897616

RESUMO

PURPOSE: Pancreatic cancer (PC) is predicted to become the second leading cause of cancer associated deaths by 2020. Earlier, we confirmed the development and efficacy of our novel Loratadine Self-Microemulsifying-Drug-Delivery-System - Sulforaphane (LOR SMEDDS -SFN) nanoformulation in PC chemoprevention. In this report, we extend our studies to evaluate the PC chemoprevention efficacy of LOR SMEDDS - SFN. METHODS: The nanoformulation was subjected to in vitro colony formation assays, in vivo oral pharmacokinetics and stability studies. RESULTS: The colony formation assay using Panc-1 PC cells demonstrated a survival fraction of 0.74 with LOR-SFN (p < 0.001) which further reduced to 0.35 with LOR SMEDDS-SFN treatment (p < 0.0001) confirming the synergistic chemoprevention efficacy of the nanoformulation. Further, the oral pharmacokinetic studies of LOR SMEDDS-SFN showed 4-fold and 9-fold increase in Cmax (503.2 ± 5.8 ng/mL) and oral bioavailability (20,274.8 ± 3711.0 ng·h/mL) for LOR compared to LOR-SFN combination respectively assuring the enhanced performance by the SMEDDS. Additionally, the formulation exhibited statistically non-significant alteration in globule size, zeta potential, drug content and in vitro drug release during stability studies confirming its stability and pharmaceutical acceptability. CONCLUSION: Our studies have demonstrated a potential of LOR SMEDDS-SFN nanoformulation as an effective PC chemoprevention strategy.


Assuntos
Loratadina/farmacologia , Loratadina/farmacocinética , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/prevenção & controle , Administração Oral , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioprevenção/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Emulsões/farmacocinética , Emulsões/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 112(14): E1724-33, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25805818

RESUMO

The small GTPase KRAS is frequently mutated in human cancer and currently there are no targeted therapies for KRAS mutant tumors. Here, we show that the small ubiquitin-like modifier (SUMO) pathway is required for KRAS-driven transformation. RNAi depletion of the SUMO E2 ligase Ubc9 suppresses 3D growth of KRAS mutant colorectal cancer cells in vitro and attenuates tumor growth in vivo. In KRAS mutant cells, a subset of proteins exhibit elevated levels of SUMOylation. Among these proteins, KAP1, CHD1, and EIF3L collectively support anchorage-independent growth, and the SUMOylation of KAP1 is necessary for its activity in this context. Thus, the SUMO pathway critically contributes to the transformed phenotype of KRAS mutant cells and Ubc9 presents a potential target for the treatment of KRAS mutant colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Enzimas de Conjugação de Ubiquitina/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Células CACO-2 , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Genes ras , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(39): 14147-52, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25122679

RESUMO

Autophagy is the principal catabolic prosurvival pathway during nutritional starvation. However, excessive autophagy could be cytotoxic, contributing to cell death, but its mechanism remains elusive. Arginine starvation has emerged as a potential therapy for several types of cancers, owing to their tumor-selective deficiency of the arginine metabolism. We demonstrated here that arginine depletion by arginine deiminase induces a cytotoxic autophagy in argininosuccinate synthetase (ASS1)-deficient prostate cancer cells. Advanced microscopic analyses of arginine-deprived dying cells revealed a novel phenotype with giant autophagosome formation, nucleus membrane rupture, and histone-associated DNA leakage encaptured by autophagosomes, which we shall refer to as chromatin autophagy, or chromatophagy. In addition, nuclear inner membrane (lamin A/C) underwent localized rearrangement and outer membrane (NUP98) partially fused with autophagosome membrane. Further analysis showed that prolonged arginine depletion impaired mitochondrial oxidative phosphorylation function and depolarized mitochondrial membrane potential. Thus, reactive oxygen species (ROS) production significantly increased in both cytosolic and mitochondrial fractions, presumably leading to DNA damage accumulation. Addition of ROS scavenger N-acetyl cysteine or knockdown of ATG5 or BECLIN1 attenuated the chromatophagy phenotype. Our data uncover an atypical autophagy-related death pathway and suggest that mitochondrial damage is central to linking arginine starvation and chromatophagy in two distinct cellular compartments.


Assuntos
Arginina/metabolismo , Morte Celular/fisiologia , DNA de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Arginina/deficiência , Argininossuccinato Sintase/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Humanos , Hidrolases/farmacologia , Masculino , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Polietilenoglicóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Pharm ; 13(1): 262-71, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26642391

RESUMO

Arginine depletion strategies, such as pegylated recombinant arginine deiminase (ADI-PEG20), offer a promising anticancer treatment. Many tumor cells have suppressed expression of a key enzyme, argininosuccinate synthetase 1 (ASS1), which converts citrulline to arginine. These tumor cells become arginine auxotrophic, as they can no longer synthesize endogenous arginine intracellularly from citrulline, and are therefore sensitive to arginine depletion therapy. However, since ADI-PEG20 only depletes extracellular arginine due to low internalization, ASS1-expressing cells are not susceptible to treatment since they can synthesize arginine intracellularly. Recent studies have found that several factors influence ASS1 expression. In this study, we evaluated the effect of hypoxia, frequently encountered in many solid tumors, on ASS1 expression and its relationship to ADI-resistance in human MDA-MB-231 breast cancer cells. It was found that MDA-MB-231 cells developed ADI resistance in hypoxic conditions with increased ASS1 expression. To restore ADI sensitivity as well as achieve tumor-selective delivery under hypoxia, we constructed a pH-sensitive cell penetrating peptide (CPP)-based delivery system to carry ADI inside cells to deplete both intra- and extracellular arginine. The delivery system was designed to activate the CPP-mediated internalization only at the mildly acidic pH (6.5-7) associated with the microenvironment of hypoxic tumors, thus achieving better selectivity toward tumor cells. The pH sensitivity of the CPP HBHAc was controlled by recombinant fusion to a histidine-glutamine (HE) oligopeptide, generating HBHAc-HE-ADI. The tumor distribution of HBHAc-HE-ADI was comparable to ADI-PEG20 in a mouse xenograft model of human breast cancer cells in vivo. In addition, HBHAc-HE-ADI showed increased in vitro cellular uptake in cells incubated in a mildly acidic pH (hypoxic conditions) compared to normal pH (normoxic conditions), which correlated with pH-sensitive in vitro cytotoxicity in hypoxic MDA-MB-231 and human prostate cancer PC3 cells. Together, we conclude that the HBHAc-HE-based peptide delivery offers a useful means to overcome hypoxia-induced resistance to ADI in breast cancer cells, and to target the mildly acidic tumor microenvironment.


Assuntos
Peptídeos Penetradores de Células/química , Hidrolases/administração & dosagem , Hidrolases/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Animais , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Hidrolases/química , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Pharmacol ; 87(2): 263-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480843

RESUMO

Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Citotoxinas/metabolismo , Mimetismo Molecular/fisiologia , Fragmentos de Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Neoplasias da Mama/genética , Citotoxinas/genética , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fragmentos de Peptídeos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Distribuição Aleatória
13.
J Biol Chem ; 289(30): 20757-72, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24907272

RESUMO

Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Proteólise , Proteína SUMO-1/metabolismo , Sumoilação/fisiologia , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína SUMO-1/genética , Fatores de Transcrição/genética , Proteína 28 com Motivo Tripartido
14.
Nucleic Acids Res ; 41(11): 5784-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589625

RESUMO

The DNA damage response (DDR) involves both the control of DNA damage repair and signaling to cell cycle checkpoints. Therefore, unraveling the underlying mechanisms of the DDR is important for understanding tumor suppression and cellular resistance to clastogenic cancer therapeutics. Because the DDR is likely to be influenced by chromatin regulation at the sites of DNA damage, we investigated the role of heterochromatin protein 1 (HP1) during the DDR process. We monitored double-strand breaks (DSBs) using the γH2AX foci marker and found that depleting cells of HP1 caused genotoxic stress, a delay in the repair of DSBs and elevated levels of apoptosis after irradiation. Furthermore, we found that these defects in repair were associated with impaired BRCA1 function. Depleting HP1 reduced recruitment of BRCA1 to DSBs and caused defects in two BRCA1-mediated DDR events: (i) the homologous recombination repair pathway and (ii) the arrest of cell cycle at the G2/M checkpoint. In contrast, depleting HP1 from cells did not affect the non-homologous end-joining (NHEJ) pathway: instead it elevated the recruitment of the 53BP1 NHEJ factor to DSBs. Notably, all three subtypes of HP1 seemed to be almost equally important for these DDR functions. We suggest that the dynamic interaction of HP1 with chromatin and other DDR factors could determine DNA repair choice and cell fate after DNA damage. We also suggest that compromising HP1 expression could promote tumorigenesis by impairing the function of the BRCA1 tumor suppressor.


Assuntos
Proteína BRCA1/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Reparo de DNA por Recombinação , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/fisiologia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Radiação Ionizante , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
15.
BMC Cancer ; 14: 124, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564888

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. METHODS: We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. RESULTS: WNT5B was elevated both in the tumor and the patients' serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/ß-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B and MCL1 are associated with enhanced metastasis and decreased disease-free survival. CONCLUSIONS: All our findings suggested that WNT5B/MCL1 cascade is critical for TNBC and understanding its regulatory apparatus provided valuable insight into the pathogenesis of the tumor development and the guidance for targeting therapeutics.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Proteínas Wnt/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Estudos de Coortes , Feminino , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/fisiologia , Taxa de Sobrevida/tendências , Neoplasias de Mama Triplo Negativas/diagnóstico
16.
Genes Dis ; 11(1): 382-396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37588203

RESUMO

As the most common internal modification of mRNA, N6-methyladenosine (m6A) and its regulators modulate gene expression and play critical roles in various biological and pathological processes including tumorigenesis. It was reported previously that m6A methyltransferase (writer), methyltransferase-like 3 (METTL3) adds m6A in primary microRNAs (pri-miRNAs) and facilitates its processing into precursor miRNAs (pre-miRNAs). However, it is unknown whether m6A modification also plays a role in the maturation process of pre-miRNAs and (if so) whether such a function contributes to tumorigenesis. Here, we found that YTHDF2 is aberrantly overexpressed in acute myeloid leukemia (AML) patients, especially in relapsed patients, and plays an oncogenic role in AML. Moreover, YTHDF2 promotes expression of miR-126-3p (also known as miR-126, as it is the main product of precursor miR-126 (pre-miR-126)), a miRNA that was reported as an oncomiRNA in AML, through facilitating the processing of pre-miR-126 into mature miR-126. Mechanistically, YTHDF2 recognizes m6A modification in pre-miR-126 and recruits AGO2, a regulator of pre-miRNA processing, to promote the maturation of pre-miR-126. YTHDF2 positively and negatively correlates with miR-126 and miR-126's downstream target genes, respectively, in AML patients, and forced expression of miR-126 could largely rescue YTHDF2/Ythdf2 depletion-mediated suppression on AML cell growth/proliferation and leukemogenesis, indicating that miR-126 is a functionally important target of YTHDF2 in AML. Overall, our studies not only reveal a previously unappreciated YTHDF2/miR-126 axis in AML and highlight the therapeutic potential of targeting this axis for AML treatment, but also suggest that m6A plays a role in pre-miRNA processing that contributes to tumorigenesis.

17.
J Biol Chem ; 287(10): 7026-38, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22241478

RESUMO

Interactions between transforming growth factor-ß (TGF-ß) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated ß-catenin-dependent and transforming growth factor-ß1 (TGF-ß1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the ß-catenin/CBP (but not ß-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-ß1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-ß1 induces LEF/TCF TOPFLASH reporter activation and nuclear ß-catenin accumulation, while LiCl augments TGF-ß-induced α-SMA expression, further confirming co-operation between ß-catenin- and TGF-ß-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of ß-catenin and overexpression of ICAT abrogated effects of TGF-ß1 on α-SMA transcription/expression, indicating a requirement for ß-catenin in these Smad3-dependent effects. Following TGF-ß treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and ß-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, ß-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-ß as well as α-SMA promoter occupancy by ß-catenin and CBP, demonstrating a previously unknown requisite TGF-ß1/ß-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by ß-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-ß.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , beta Catenina/metabolismo , Actinas/biossíntese , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Ligação a CREB , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Fibrose Pulmonar/genética , Pirimidinonas/farmacologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , beta Catenina/genética
18.
J Biol Chem ; 287(12): 8662-74, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22277651

RESUMO

The widely expressed transcriptional coregulator, ligand-dependent corepressor (LCoR), initially characterized as a regulator of nuclear receptor-mediated transactivation, functions through recruitment of C-terminal binding proteins (CtBPs) and histone deacetylases (HDACs) to its N-terminal and central domains, respectively. We performed a yeast two-hybrid screen for novel cofactors, and identified an interaction between the C-terminal domain of LCoR and the transcription factor Krüppel-like factor 6 (KLF6), a putative tumor suppressor in prostate cancer. Subsequent experiments revealed LCoR regulation of several KLF6 target genes notably p21(WAF1/CIP1) (CDKN1A) and to a lesser extent E-cadherin (CDH1), indicating that LCoR regulates gene transcription through multiple classes of transcription factors. In multiple cancer cells, LCoR and KLF6 bind together on the promoters of the genes encoding CDKN1A and CDH1. LCoR contributes to KLF6-mediated transcriptional repression in a promoter- and cell type-dependent manner. Its inhibition of reporter constructs driven by the CDKN1A and CDH1 promoters in PC-3 prostate carcinoma cells is sensitive to treatment with the HDAC inhibitor trichostatin A. Additionally, the LCoR cofactor CtBP1 bound the same promoters and augmented the LCoR-dependent repression in PC-3 cells. Consistent with their inferred roles in transcriptional repression, siRNA-mediated knockdown of KLF6, LCoR, or CtBP1 in PC-3 cells induced expression of CDKN1A and CDH1 and additional KLF6 target genes. We propose a novel model of LCoR function in which promoter-bound KLF6 inhibits transcription of the CDKN1A gene and other genes as well by tethering a transcriptional corepressor complex containing LCoR, with specific contributions by CtBP1 and HDACs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
19.
Proc Natl Acad Sci U S A ; 107(9): 4383-8, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142477

RESUMO

Autophagy is a catabolic process by which cells remove long-lived proteins and damaged organelles for recycling. Viral infections may also induce autophagic response. Here we show that hepatitis B virus (HBV), a pathogen that chronically infects approximately 350 million people globally, can enhance autophagic response in cell cultures, mouse liver, and during natural infection. This enhancement of the autophagic response is not coupled by an increase of autophagic protein degradation and is dependent on the viral X protein, which binds to and enhances the enzymatic activity of phosphatidylinositol 3-kinase class III, an enzyme critical for the initiation of autophagy. Further analysis indicates that autophagy enhances HBV DNA replication, with minimal involvement of late autophagic vacuoles in this process. Our studies thus demonstrate that a DNA virus can use autophagy to enhance its own replication and indicate the possibility of targeting the autophagic pathway for the treatment of HBV patients.


Assuntos
Autofagia , DNA Viral/biossíntese , Vírus da Hepatite B/fisiologia , Replicação Viral , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Células Cultivadas , Ativação Enzimática , Vírus da Hepatite B/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno
20.
Cell Death Dis ; 14(1): 53, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681663

RESUMO

Obesity is a risk factor in various types of cancer, including breast cancer. The disturbance of adipose tissue in obesity highly correlates with cancer progression and resistance to standard treatments such as chemo- and radio-therapies. In this study, in a syngeneic mouse model of triple-negative breast cancer (TNBC), diet-induced obesity (DIO) not only promoted tumor growth, but also reduced tumor response to radiotherapy. Serpine1 (Pai-1) was elevated in the circulation of obese mice and was enriched within tumor microenvironment. In vitro co-culture of human white adipocytes-conditioned medium (hAd-CM) with TNBC cells potentiated the aggressive phenotypes and radioresistance of TNBC cells. Moreover, inhibition of both cancer cell autonomous and non-autonomous SERPINE1 by either genetic or pharmacological strategy markedly dampened the aggressive phenotypes and radioresistance of TNBC cells. Mechanistically, we uncovered a previously unrecognized role of SERPINE1 in DNA damage response. Ionizing radiation-induced DNA double-strand breaks (DSBs) increased the expression of SERPINE1 in cancer cells in an ATM/ATR-dependent manner, and promoted nuclear localization of SERPINE1 to facilitate DSB repair. By analyzing public clinical datasets, higher SERPINE1 expression in TNBC correlated with patients' BMI as well as poor outcomes. Elevated SERPINE1 expression and nuclear localization were also observed in radioresistant breast cancer cells. Collectively, we reveal a link between obesity and radioresistance in TNBC and identify SERPINE1 to be a crucial factor mediating obesity-associated tumor radioresistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Reparo do DNA , Obesidade/genética , Obesidade/complicações , Quebras de DNA de Cadeia Dupla , Microambiente Tumoral , Inibidor 1 de Ativador de Plasminogênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA