Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(20): e202304206, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319588

RESUMO

This study conducts a thorough theoretical investigation of Thermally Activated Delayed Fluorescence (TADF) in phenothiazine-based systems, examining ten molecular configurations recognized experimentally as TADF-active. Employing Time-Dependent Density Functional Theory (TD-DFT), our analysis spans the investigation of singlet-triplet energy gaps (ΔEST), spin-orbit coupling, and excitation characteristics using Multiwfn. This approach not only validates the adherence to El Sayed's rule across these systems but also provides a detailed understanding of charge transfer dynamics, as visualized through heat maps. A significant aspect of our study is the exploration of different oxidation states of sulfur and site substitutions on phenothiazine. This systematic variation aims to identify additional TADF-active compounds, drawing parallels with properties characterizing other known TADF emitters. Our investigation into Reverse Intersystem Crossing (rISC) rates and the analysis of dihedral angles in relation to ΔEST values offer nuanced insights into the TADF behaviours of these molecules. By integrating rigorous computational analysis with practical implications, we provide a foundational understanding that enhances the design and optimization of phenothiazine-based materials for optoelectronic applications. This work not only advances our theoretical understanding of TADF in phenothiazine derivatives but also serves as a guide for experimentalists and industry professionals in the strategic design of new TADF materials.

2.
J Chem Inf Model ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982947

RESUMO

Targeted treatments for breast cancer that minimize harm to healthy cells are highly sought after. Our study explores the potentiality of riboflavin as a targeted anticancer compound that can be activated by light irradiation. Here, we integrated time-dependent density functional theory (TD-DFT) calculations and an in vitro study under visible light. The TD-DFT calculations revealed that the electronic charge transferred from the DNA base to riboflavin, with the most significant excitation peak occurring within the visible light range. Guided by these insights, an in vitro study was conducted on the breast cancer cell lines MCF-7 and MDA-MB-231. The results revealed substantial growth inhibition in these cell lines when exposed to riboflavin under visible light, with no such impact observed in the absence of light exposure. Interestingly, riboflavin exhibited no/minimal growth-inhibitory effects on the normal cell line L929, irrespective of light conditions. Moreover, through EtBr displacement (DNA-EtBr) and the TUNEL assay, it has been illustrated that, upon exposure to visible light, riboflavin can intercalate within DNA and induce DNA damage. In conclusion, under visible light conditions, riboflavin emerges as a promising candidate with a selective and effective potent anticancer agent against breast cancer while exerting a minimal influence on regular cellular activity.

3.
Phys Chem Chem Phys ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011880

RESUMO

The photoionization (PI) spectra of small gas-phase yttrium monoxide clusters, YnO (n = 1-8), are investigated, and the adiabatic ionization energies are determined. The stable structures are obtained from density functional theory (DFT) calculations. The ground state structures are further confirmed by the CCSD(T) method. The PI spectra are calculated for these stable structures and are compared with the experimental PI spectra. The ground-state structures of the neutral and cation clusters are experimentally assigned with confidence on the basis of a favourable agreement between the experimental and calculated PI spectra. New structures are proposed for Y2O, Y6O, and Y8O compared to the previous literature. Y2O is a linear molecule in the ground state that was previously proposed as a C2v bent molecule. The YnO clusters become 3-dimensional from n ≥ 3. The O atom stays outside, bridging a triangular face of yttrium clusters. Chemical bonding between the yttrium and oxygen atoms is mostly ionic. The excess charge on the oxygen atom is around 1.4e-, transferred from the yttrium atoms bonded with it. Yttrium atoms are mostly covalently bonded. However, for the bigger clusters, free charges of both polarities appear on yttrium atoms that are not bonded with oxygen, indicating ionic interactions. Frontier orbitals consist of mainly delocalized 4d electrons with some 5s contributions, forming Y-Y bonding interactions, but with little contribution and zero contribution from the oxygen orbitals, regardless of the cluster size. The lost electron of YnO+ mostly comes from the 5s orbitals of all Y atoms in the cluster up to size n = 4, and then from 4d-5s hybrid orbitals from n ≥ 5, with the d contribution increasing with size. This is contrary to the previous view in the literature that photoionization occurs from a localized 4d orbital.

4.
J Phys Chem A ; 128(8): 1466-1476, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38364260

RESUMO

Considering the importance of magnesium-bearing hydrocarbon molecules (MgCnH; n = 2, 4, and 6) in the carbon-rich circumstellar envelopes (e.g., IRC+10216), a total of 28 constitutional isomers of MgC4H have been theoretically investigated using density functional theory (DFT) and coupled-cluster methods. The zero-point vibrational energy corrected relative energies at the ROCCSD(T)/cc-pCVTZ level of theory reveal that the linear isomer, 1-magnesapent-2,4-diyn-1-yl (1, 2Σ+), is the global minimum geometry on the MgC4H potential energy surface. The latter has been detected both in the laboratory and in the evolved carbon star, IRC+10216. The calculated spectroscopic data for 1 match well with the experimental observations (error ∼ 0.78%) which validates our theoretical methodology. Plausible isomerization processes happening among different isomers are examined using DFT and coupled-cluster methods. CASPT2 calculations have been performed for a few isomers exhibiting multireference characteristics. The second most stable isomer, 1-ethynyl-1λ3-magnesacycloprop-2-ene-2,3-diyl (2, 2A1, µ = 2.54 D), is 146 kJ mol-1 higher in energy than 1 and possibly the next promising candidate to be detected in the laboratory or in the interstellar medium in future.

5.
Phys Chem Chem Phys ; 25(29): 19986-20000, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461397

RESUMO

We investigated the structural and energetic properties of nanoclusters and nanoalloys composed of group 13 elements (B, Al, and Ga) up to a cluster size of 12. We conducted a comprehensive benchmark analysis of density functional and post-Hartree-Fock methods to identify efficient and accurate approaches for studying these systems using our benchmark dataset (BAlGa16) consisting of sixteen dimers and trimers. We compared different density functionals and post-Hartree-Fock methods using bond length and binding energy as parameters. B2PLYP closely follows CCSD(T) for geometry optimization, while REVPBE, BPBE, and PBE show cost-accuracy balanced performances. MRACPF was used as the reference for benchmarking energies, with NEVPT2 being the most accurate method, followed by CCSD(T) and DLPNO-CCSD(T). M06 and range-separated hybrid functionals perform well. Based on a cost-accuracy analysis, we recommend M06/def2-SVP as the preferred method. Additionally, we explored the structural evolution of pure, binary, and ternary clusters of group 13 elements up to 12 atoms, uncovering global and local minima. Ga clusters exhibited more rectangular faces compared to the predominantly trigonal faces of B and Al clusters. Binary clusters showed B in center positions, while Ga preferred outer positions, confirming the higher cohesion of B. The most favorable size of binary clusters (12) exhibited similar compositions of Al and Ga atoms. Compositions with 16.67-40% B, 16.67-60% Al, and 20-50% Ga were estimated to have negative mixing energies, indicating their relative stability.

6.
J Phys Chem A ; 127(10): 2242-2257, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36877153

RESUMO

In light of the recent surge in computational studies of gold thiolate clusters, we present a comparison of popular density functionals (DFAs) and three-part corrected methods (3c-methods) on their performance by taking a data set named as AuSR18 consisting of 18 isomers of Aun(SCH3)m (m ≤ n = 1-3). We have compared the efficiency and accuracy of the DFAs and 3c-methods in geometry optimization with RI-SCS-MP2 as the reference method. Similarly, the performance for accurate and efficient energy evaluation was compared with DLPNO-CCSD(T) as the reference method. The lowest energy structure among the isomers of the largest stoichiometry from our data set, AuSR18, i.e., Au3(SCH3)3, is considered to evaluate the computational time for SCF and gradient evaluations. Alongside this, the numbers of optimization steps to locate the most stable minima of Au3(SCH3)3 are compared to assess the efficiency of the methods. A comparison of relevant bond lengths with the reference geometries was made to estimate the accuracy in geometry optimization. Some methods, such as LC-BLYP, ωB97M-D3BJ, M06-2X, and PBEh-3c, could not locate many of the minima found by most of the other methods; thus, the versatility in locating various minima is also an important criterion in choosing a method for the given project. To determine the accuracy of the methods, we compared the relative energies of the isomers in each stoichiometry and the interaction energy of the gold core with the ligands. The dependence of basis set size and relativistic effects on energies are also compared. The following are some of the highlights. TPSS has shown accuracy, while mPWPW shows comparable speed and accuracy. For the relative energies of the clusters, the hybrid range-separated DFAs are the best option. CAM-B3LYP excels, whereas B3LYP performs poorly. Overall, LC-BLYP is a balanced performer considering both the geometry and relative stability of the structures, but it lacks diversity. The 3c-methods, although fast, are less impressive in relative stability.

7.
J Org Chem ; 87(6): 3910-3921, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35130698

RESUMO

The reductive Heck cyclization of nonracemic benzylidene γ-butyrolactone is studied toward the asymmetric synthesis of aryltetralin lignans, where the stereochemistry of the benzylidene lactone is found to control the mode of cyclization. The Z-isomer undergoes mostly 6-endo-cyclization and provides the desired (-)-isopodophyllotoxin along with a minor amount of 5-exo-cyclized product, but the E-isomer goes through exclusively 5-exo-cyclization, leading to the undesired dihydroindenolactone compound instead of (-)-podophyllotoxin. The experimental results are well-supported by the DFT studies.


Assuntos
Lignanas , 4-Butirolactona , Ciclização , Lignanas/química , Modelos Teóricos , Estrutura Molecular , Podofilotoxina
8.
Phys Chem Chem Phys ; 24(27): 16701-16711, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770562

RESUMO

Density functional theory (DFT) based calculations have been carried out to explore the potential energy surface (PES) of CSinGe4-n2+/+/0 (n = 1-3) systems. The global minimum structures in the di-cationic states (1a, 1b, and 1c) contain a planar tetracoordinate carbon (ptC). For the CSi2Ge22+ system, the second stable isomer (2b) also contains a ptC with 0.67 kcal mol-1 higher energy than that of the 1b ptC isomer. The global minima of the neutral and mono-cationic states of the designed systems are not planar. The 1a, 1b, and 1c structures follow the 18 valence electron rule. The relative energies of the low-lying isomers of CSiGe32+, CSi2Ge22+, and CSi3Ge2+ systems with respect to the global minima were calculated using the CCSD(T)/aug-cc-pVTZ method. Ab initio molecular dynamics simulations for 50 ps time indicate that all the global minimum structures (1a, 1b, and 1c) are kinetically stable at 300 K and 500 K temperatures. The natural bond orbital (NBO) analysis suggests strong σ-acceptance of the ptC from the four surrounding atoms and simultaneously π-donation occurs from the ptC center. The nucleus independent chemical shift (NICS) showed σ/π-dual aromaticity. We hope that the designed di-cationic systems may be viable in the gas phase.

9.
Phys Chem Chem Phys ; 24(45): 27606-27611, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36366951

RESUMO

The planar pentacoordinate carbon (ppC) atom is theoretically established here in [XC7H2]2+ and [XSi2C5H2]2+, where X = Be and Mg, using density functional theory. Inclusion compounds with alkali and alkaline earth metal ions are identified with the monomer units of tricyclic C7H2 and Si2C5H2 isomers with a planar tetracoordinate carbon (ptC) atom. While all alkali and some alkaline earth metals (Ca2+, Sr2+, and Ba2+) stabilize the ptC isomer in both cases, Be2+ and Mg2+ ions form a bond directly with the ptC atom, thus making it a ppC atom. The theoretical binding energies computed at the PBE0-D3/def2-TZVP level of theory are ∼-9.68, -10.42, -5.85, and -5.47 eV for [BeC7H2]2+, [BeSi2C5H2]2+, [MgC7H2]2+, and [MgSi2C5H2]2+, respectively.

10.
Phys Chem Chem Phys ; 24(19): 11680-11686, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506427

RESUMO

Though search algorithms are appropriate tools for identifying low-energy isomers, fixing several constraints seems to be a fundamental prerequisite to successfully running any structural search program. This causes some potential setbacks as far as identifying all possible isomers, close to the lowest-energy isomer, for any elemental composition. The number of explored candidates, the choice of method, basis set, and availability of CPU time needed to analyze the various initial test structures become necessary restrictions in resolving the issues of structural isomerism reasonably. While one could arrive at new structures through chemical intuition, reproducing or achieving those exact same structures requires increasing the number of variables in any given program, which causes further constraints in exploring the potential energy surface in a reasonable amount of time. Thus, it is emphasized here that an integrated approach between search algorithms and chemical intuition is necessary by taking the C12O2Mg2 system as an example. Our initial search through the AUTOMATON program yielded 1450 different geometries. However, through chemical intuition, we found eighteen new geometries within 40.0 kcal mol-1 at the PBE0-D3/def2-TZVP level. These results indirectly emphasize that an integrated approach between search algorithms and chemical intuition is necessary to further our knowledge in chemical space for any given elemental composition.


Assuntos
Algoritmos , Intuição , Isomerismo
11.
J Phys Chem A ; 126(46): 8562-8576, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378081

RESUMO

We studied the steps in the formation of active palladium catalyst species from palladium acetate dimer employing density functional theory calculations. We explored the possible pathways with an automated reaction search and studied the kinetics with stochastic simulation analysis. The dimeric form of palladium acetate is considered a resting state of the catalyst. Our reaction search starting from the dimeric form by sequential ligand addition resulted in experimentally observed monomeric species. We analyzed the bonding in the palladium acetate dimer and the role of Pd in the stability of the dimeric species. We implemented the Gillespie stochastic simulation algorithm to gain more insights into multichannel reaction paths and applied it to the degradation pathways. The analysis of the thermodynamic and kinetic data for these degradation pathways suggests that the dimeric form of the catalyst can be a potential catalytic precursor in the palladium acetate-catalyzed coupling reactions under the experimental reaction conditions.


Assuntos
Acetatos , Paládio , Catálise , Cinética , Ligantes
12.
J Phys Chem A ; 126(8): 1345-1359, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188378

RESUMO

Nanoclusters are materials of paramount catalytic importance. Among various unique properties featured by nanoclusters, a pronounced relativistic effect can be a decisive parameter in governing their catalytic activity. A concise study delineating the role of relativistic effects in nanocluster catalysis is carried by investigating the oxygen reduction reaction (ORR) activity of a Pt7 subnanometer cluster. Global optimization analysis shows the critical role of spin-orbit coupling (SOC) in regulating the relative stability between structural isomers of the cluster. An overall improved ORR adsorption energetics and differently scaled adsorption-induced structural changes are identified with SOC compared to a non-SOC scenario. Ab initio atomistic thermodynamics analysis predicted nearly identical phase diagrams with significant structural differences for high coverage oxygenated clusters under realistic conditions. Though inclusion of SOC does not bring about drastic changes in the overall catalytic activity of the cluster, it is having a crucial role in governing the rate-determining step, transition-state configuration, and energetics of elementary reaction pathways. Furthermore, a statistical ensemble-based approach illustrates the strong contribution of low-energy local minimum structural isomers to the total ORR activity, which is significantly scaled up along the activity improving direction within the SOC framework. The study provides critical insights toward the importance of relativistic effects in determining various catalytic activity relevant features of nanoclusters.

13.
J Phys Chem A ; 126(27): 4465-4475, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767462

RESUMO

Considering the recent findings of linear doublet (2Σ+) MgCnH isomers (n = 2, 4, and 6) in the evolved carbon star IRC+10216, various structural isomers of MgC3H and MgC3H+ are theoretically investigated here. For MgC3H, 11 doublet and 8 quartet stationary points ranging from 0.0 to 71.8 and 0.0 to 110.1 kcal mol-1, respectively, have been identified initially at the UωB97XD/6-311++G(2d,2p) level. To get accurate relative energies, further energy evaluations are carried out for all isomers with coupled cluster methods and thermochemical modules such as G3//B3LYP, G4MP2, and CBS-QB3 methods. Unlike the even series, where the global minima are linear molecules with a Mg atom at one end, in the case of MgC3H, the global minimum geometry turns out to be a cyclic isomer, 2-magnesabicyclo[1.1.0]but-1,3,4-triyl (1, C2v, 2A1). In addition, five low-lying isomers, magnesium-substituted cyclopropenylidene (2, Cs, 2A'), 1-magnesabut-2,3-dien-1-yl-4-ylidene (3, Cs, 2A″), 1-magnesabut-2-yn-1-yl-4-ylidene (4, Cs, 2A″), 2λ3-magnesabicyclo[1.1.0]but-1,3-diyl-4-ylidene (5, C2v;, 2A1), and 1-magnesabut-2,3-dien-2-yl-4-ylidene (6, C∞v, 2Σ+), were also identified. The doublet linear isomer of MgC3H, 1-magnesabutatrienyl (10, C∞v, 2Σ+) turns out to be a minimum but lies 54.1 kcal mol-1 above 1 at the ROCCSD(T)/cc-pVTZ level. The quartet (4Σ+) electronic state of 10 was also found to be a minimum, but it lies 8.0 kcal mol-1 above 1 at the same level. Among quartets, isomer 10 is the most stable molecule. The next quartet electronic state (of isomer 11) is 34.4 kcal mol-1 above 10, and all other quartet electronic states of other isomers are not energetically close to low-lying doublet isomers 2 to 6. Overall, the chemical space of MgC3H contains more cyclic isomers (1, 2, and 3) on the low-energy side unlike their even-numbered MgCnH counterparts (n = 2, 4, and 6). Though the quartet electronic state of 10 is linear, it is not the global minimum geometry on the MgC3H potential energy surface. Isomerization pathways among the low-lying isomers (doublets of 1-4 and a quartet of 10) reveal that these molecules are kinetically stable. For the cation, MgC3H+, the cyclic isomers (1+, 2+, and 3+) are on the low-energy side. The singlet linear isomer, 10+, is a fourth-order saddle point. The low-lying cations are quite polar, with dipole moment values of >7.00 D. The current theoretical data would be helpful to both laboratory astrophysicists and radioastronomers for further studies on the MgC3H0/+ isomers.

14.
J Comput Chem ; 42(27): 1944-1958, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34309891

RESUMO

Metal nanoclusters are an important class of materials for catalytic applications. Sub nanometer clusters are relatively less explored for their catalytic activity on account of undercoordinated surface structure. Taking this into account, we studied platinum-based sub nanometer clusters for their catalytic activity for oxygen reduction reaction (ORR). A comprehensive analysis with global optimization is carried out for structural prediction of the platinum clusters. The energetic and electronic properties of interactions of clusters with reaction intermediates are investigated. The role of structural sensitivity in the dynamics of clusters is unraveled, and unique intermediate specific interactions are identified. ORR energetics is examined, and exceptional activity for sub nanometer clusters are observed. An inverse size versus activity relationship is identified, challenging the conventional trends followed by larger nanoclusters. The principal role of atomicity in governing the catalytic activity of nanoclusters is illustrated. The structural norms governing the sub nanometer cluster activity are shown to be markedly different from larger nanoclusters.

15.
Inorg Chem ; 59(2): 1461-1470, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877037

RESUMO

Cerium(IV)-driven water oxidation catalysis mediated by a mononuclear ruthenium(III) complex, [Ru(L)(pic)3] (H3L = 2,2'-iminodibenzoic acid, pic = 4-methylpyridine), has been demonstrated in this work. The mechanistic details of water oxidation have been investigated by the combined use of spectroscopy, electrochemistry, kinetic analysis, and computational studies. It was found that water oxidation proceeds via formal high-valent RuVII species. The capability of accessing such a high-valent state is derived from the non-innocent behavior of the anionic tridentate ligand frame which helps in accumulation of oxidative equivalents in cooperation with metal center. This metal-ligand cooperation facilitates the multi-electron-transfer reaction such as water oxidation. Kinetic analysis suggests water oxidation at a single site of Ru where O-O bond formation occurs via radical-radical coupling pathway between the oxygen atom of ruthenium-oxo species and the oxygen atom of the hydroxocerium(IV) ion.

16.
J Org Chem ; 84(5): 2911-2921, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689384

RESUMO

Inducing high regioselectivity in nucleophilic addition to p-benzynes, first reported by Perrin and O'Connor et al. ( J. Am. Chem. Soc. 2007 , 129 , 4795 - 4799 ) has been a challenge as the reaction involves a very fast barrier-less addition of nucleophile. On the other hand, achieving a high degree of regioselectivity is important as that will make the reaction synthetically useful. Recently, a study has been reported from our group ( J. Org. Chem. 2018 , 83 , 7730 - 7740 ), whereby it was shown that nucleophilic addition to p-benzynes derived from unsymmetrical N-substituted cyclic enediynes proceeds with low extent of selectivity by incorporation of groups with divergent electronic characters. Herein, we report that excellent regioselectivity (>99%) can be achieved keeping an ortho alkoxy group in unsymmetrical 1,2-dialkynylbenzene in the form of a cyclic enediyne in quantitative yields. High regioselectivity (∼84%) is also shown by pyridine based enediynes where the pyridine nitrogen is in a 1,3-relationship with the impending radical center, expanding the synthetic scope of this nucleophilic addition. The regioselectivity can be explained in terms of computed electrostatic potentials which are substantially different around two radical centers arising due to the "ortho effect" (conformational alignment of lone pair of the ortho alkoxy oxygen or the nitrogen in pyridine systems).

17.
Chemistry ; 24(19): 4885-4894, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29369429

RESUMO

HCN oligomerization is considered to be one of the important pathways in chemical evolution. Nucleobases, aminoacids, and many other complex organic molecules can evolve through this pathway. We report an explorative study based on an automated reaction search method that avoids the cognitive bias present when searching chemical reaction space. We discuss the chemical space of the HCN dimer in detail, and the important trimers and tetramers are discussed briefly. A component-wise molecular-fingerprint-based methodology is proposed to identify molecular similarity. We present four different thermal routes to cis/trans-2,3-diaminomaleonitrile and 4-amino-1H-imidazole-5-carbonitrile, which are important intermediates in prebiotic chemistry.

18.
J Org Chem ; 83(15): 7730-7740, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29790752

RESUMO

The regioselectivity in addition of nucleophiles to the p-benzyne intermediates derived from unsymmetrical aza-substituted enediynes via Bergman cyclization was studied. Computational studies [using UB3LYP/6-31G(d,p) level of theory] suggest that the p-benzyne intermediate retains its similar electrophilic character at the two radical centers even under unsymmetrical electronic perturbation, thus supporting the predicted model of nucleophilic addition to p-benzyne proposed by Perrin and co-workers (Perrin et al. J. Am. Chem. Soc. 2007, 129, 4795-4799) and later by Alabugin and co-workers (Peterson et al. Eur. J. Org. Chem. 2013, 2013, 2505-2527). However, observed experimental results suggest that there was small but definite regioselectivity (∼5-25%), the extent varying with the electronic nature of the substituents. Differential solvated halide ion concentrations around the vicinity of two radical centers arising due to surrounding surface electrostatic potential (computationally calculated) may be one of the possible factors for such selectivity in some of the examined p-benzynes. However, other complicated dynamical issues like the trajectory of the attacking nucleophile to the radical center which can be influenced by electronic and/or steric perturbation of starting enediyne conformation cannot be ruled out. The overall yield of the anionic addition was in the range of 80-99%.

19.
Org Biomol Chem ; 15(40): 8544-8552, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28971196

RESUMO

o-Hydroxycinnamate derivatives are well-known phototriggers for fast and direct release of alcohols and amines without proceeding through the cleavage of carbonate or carbamate linkages. Despite these unique features, o-hydroxycinnamates lack extensive applications in biological systems mainly because of their non-fluorescent nature. To overcome this limitation, we have attached a 2-(2'-hydroxyphenyl) benzothiazole (HBT) moiety, capable of rapid excited-state intramolecular proton transfer (ESIPT) to the o-hydroxycinnamate group. The ESIPT effect induced two major advantages to the o-hydroxycinnamate group: (i) large Stokes' shifted fluorescence (orange colour) properties and (ii) distinct fluorescence colour change upon photorelease. In vitro studies exhibited an image guided, photoregulated release of bioactive molecules by the o-hydroxycinnamate-benzothiazole-methyl salicylate conjugate and real-time monitoring of the release action.

20.
J Org Chem ; 81(17): 7411-8, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27464253

RESUMO

We studied the variation in mechanism among different bispropargyl substrates-sulfone, sulfide, ether, amine, and methane-toward Garratt-Braverman (GB) cyclization using density functional theory calculations. Isomerization and cycloaddition are the key steps in the GB cyclization. To compare the reactivity among the various substrates, we computed the free energy of activation (ΔG(⧧)) for the cycloaddition and the cyclization steps, whereas we used the theoretically computed pKa values for the isomerization steps. Our results suggest that the sulfones undergo a relatively fast isomerization followed by slower cyclization, while the ethers undergo a slow isomerization followed by easy cyclization. The methanes and amines are similar to the ethers, and the sulfides showed intermediate behavior. We extended our study to unsymmetrical substrates and compare the results with experiments that suggest the isomerization to be the rate-limiting step for bispropargyl ethers, while cyclization through a diradical intermediate is crucial to the rate for the bispropargyl sulfones. On the basis of these findings, we made predictions on the selectivity of unsymmetrical bispropargyl sulfones, amines, methanes, and sulfides. This is the first detailed mechanistic study on the GB cyclization of bispropargyl substrates other than sulfones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA