Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Brief Bioinform ; 22(2): 1006-1022, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33377145

RESUMO

Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.


Assuntos
Evolução Biológica , Uso do Códon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Humanos , Modelos Animais , Mutação , RNA de Transferência/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Rev Med Virol ; 31(5): 1-11, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476063

RESUMO

The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid-19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI-based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid-19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI-based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid-19 cases. AI-based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid-19 pandemic.


Assuntos
Inteligência Artificial , COVID-19/epidemiologia , Atenção à Saúde , Humanos , Pandemias
3.
Virology ; 590: 109906, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096748

RESUMO

The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.


Assuntos
Infecções por Enterovirus , Enterovirus , Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/genética , Filogenia , Sequenciamento Completo do Genoma , Genótipo , Fatores de Risco , Genoma Viral , Enterovirus/genética
4.
Pathogens ; 12(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513781

RESUMO

The present study reports the detection and molecular characterisation of rotavirus C (RVC) in sloth bears (Melursus ursinus) rescued from urban areas in India. Based on an RVC VP6 gene-targeted diagnostic RT-PCR assay, 48.3% (42/87) of sloth bears tested positive for RVC infection. The VP6, VP7, and NSP4 genes of three sloth bear RVC isolates (UP-SB19, 21, and 37) were further analysed. The VP6 genes of RVC UP-SB21 and 37 isolates were only 37% identical. The sequence identity, TM-score from structure alignment, and selection pressure (dN/dS) of VP6 UP-SB37 with pig and human RVCs isolates were (99.67%, 0.97, and 1.718) and (99.01%, 0.93, and 0.0340), respectively. However, VP6 UP-SB21 has an identity, TM-score, and dN/dS of (84.38%, 1.0, and 0.0648) and (99.63%, 1.0, and 3.7696) with human and pig RVC isolates, respectively. The VP7 genes from UP-SB19 and 37 RVC isolates were 79.98% identical and shared identity, TM-score, and dN/dS of 88.4%, 0.76, and 5.3210, along with 77.98%, 0.77, and 4.7483 with pig and human RVC isolates, respectively. The NSP4 gene of UP-SB37 RVC isolates has an identity, TM-score, and dN/dS of 98.95%, 0.76, and 0.2907, along with 83.12%, 0.34, and 0.2133 with pig and human RVC isolates, respectively. Phylogenetic analysis of the nucleotide sequences of the sloth bear RVC isolates assigned the isolate UP-SB37 to genotype G12, I2 for RVC structural genes VP7 and VP6, and E1 for NSP4 genes, respectively, while isolates UP-SB19 and UP-SB21 were classified as genotype G13 and GI7 based on the structural gene VP7, respectively. The study suggests that the RVCs circulating in the Indian sloth bear population are highly divergent and might have originated from pigs or humans, and further investigation focusing on the whole genome sequencing of the sloth bear RVC isolate may shed light on the virus origin and evolution.

5.
Tuberculosis (Edinb) ; 143: 102395, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722233

RESUMO

The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.


Assuntos
Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Estresse Fisiológico , Proteínas de Bactérias/genética
6.
Environ Microbiome ; 18(1): 87, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098078

RESUMO

BACKGROUND: The diel vertical migration (DVM) of fish provides an active transport of labile dissolved organic matter (DOM) to the deep ocean, fueling the metabolism of heterotrophic bacteria and archaea. We studied the impact of DVM on the mesopelagic prokaryotic diversity of the Red Sea focusing on the mesopelagic deep scattering layer (DSL) between 450-600 m. RESULTS: Despite the general consensus of homogeneous conditions in the mesopelagic layer, we observed variability in physico-chemical variables (oxygen, inorganic nutrients, DOC) in the depth profiles. We also identified distinct seasonal indicator prokaryotes inhabiting the DSL, representing between 2% (in spring) to over 10% (in winter) of total 16S rRNA gene sequences. The dominant indicator groups were Alteromonadales in winter, Vibrionales in spring and Microtrichales in summer. Using multidimensional scaling analysis, the DSL samples showed divergence from the surrounding mesopelagic layers and were distributed according to depth (47% of variance explained). We identified the sources of diversity that contribute to the DSL by analyzing the detailed profiles of spring, where 3 depths were sampled in the mesopelagic. On average, 7% was related to the epipelagic, 34% was common among the other mesopelagic waters and 38% was attributable to the DSL, with 21% of species being unique to this layer. CONCLUSIONS: We conclude that the mesopelagic physico-chemical properties shape a rather uniform prokaryotic community, but that the 200 m deep DSL contributes uniquely and in a high proportion to the diversity of the Red Sea mesopelagic.

7.
Front Microbiol ; 13: 780530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432231

RESUMO

Autotrophic and heterotrophic bacterioplankton are essential to the biogeochemistry of tropical ecosystems. However, the processes that govern their dynamics are not well known. We provide here a high-frequency assessment of bacterial community dynamics and concurrent environmental factors in Red Sea coastal waters. Weekly sampling of surface samples during a full annual cycle at an enclosed station revealed high variability in ecological conditions, which reflected in changes of major bacterioplankton communities. Temperature varied between 23 and 34°C during the sampling period. Autotrophic (Synechococcus, 1.7-16.2 × 104 cells mL-1) and heterotrophic bacteria (1.6-4.3 × 105 cells mL-1) showed two maxima in abundance in spring and summer, while minima were found in winter and autumn. Heterotrophic cells with high nucleic acid content (HNA) peaked in July, but their contribution to the total cell counts (35-60%) did not show a clear seasonal pattern. Actively respiring cells (CTC+) contributed between 4 and 51% of the total number of heterotrophic bacteria, while live cells (with intact membrane) consistently accounted for over 90%. Sequenced 16S rRNA amplicons revealed a predominance of Proteobacteria in summer and autumn (>40%) and a smaller contribution in winter (21-24%), with members of the Alphaproteobacteria class dominating throughout the year. The contribution of the Flavobacteriaceae family was highest in winter (21%), while the Rhodobacteraceae contribution was lowest (6%). Temperature, chlorophyll-a, and dissolved organic carbon concentration were the environmental variables with the greatest effects on bacterial abundance and diversity patterns.

8.
Virusdisease ; 32(3): 467-479, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34518804

RESUMO

Bats have a primeval evolutionary origin and have adopted various survival methods. They have played a central role in the emergence of various viral diseases. The sustenance of a plethora of virus species inside them has been an earnest area of study. This review explains how the evolution of viruses in bats has been linked to their metabolic pathways, flight abilities, reproductive abilities and colonization behaviors. The utilization of host immune response by DNA and RNA viruses is a commencement of the understanding of differences in the impact of viral infection in bats from other mammals. Rabies virus and other lyssa viruses have had long documented history as bat viruses. While many others like Ebola virus, Nipah virus, Hantavirus, SARS-CoV, MERS-CoV and other new emerging viruses like Sosuga virus, Menangle and Tioman virus are now being studied extensively for their transmission in new hosts. The ongoing pandemic SARS-CoV-2 virus has also been implicated to be originated from bats. Certain factors have been linked to spillover events while the scope of entitlement of other conditions in the spread of diseases from bats still exists. However, certain physiological and ecological parameters have been linked to specific transmission patterns, and more definite proofs are awaited for establishing these connections.

9.
Front Mol Biosci ; 8: 607886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395515

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.

10.
Environ Monit Assess ; 167(1-4): 151-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19548097

RESUMO

Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133x10(4) most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 microg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers>actinomycetes>fungi>aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cádmio/análise , Monitoramento Ambiental , Níquel/análise , Estações do Ano , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Contagem de Colônia Microbiana , Índia
11.
Front Vet Sci ; 7: 606661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585597

RESUMO

The surveillance studies for the presence of caprine rotavirus A (RVA) are limited in India, and the data for the whole-genome analysis of the caprine RVA is not available. This study describes the whole-genome-based analysis of a caprine rotavirus A strain, RVA/Goat-wt/IND/K-98/2015, from a goat kid in India. The genomic analysis revealed that the caprine RVA strain K-98, possess artiodactyl-like and DS-1 human-like genome constellation G8P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The three structural genes (VP2, VP4, and VP7) were close to caprine host having nucleotide-based identity range between 97.5 and 98.9%. Apart from them, other gene segments showed similarity with either bovine or human like genes, ultimately pointing toward a common evolutionary origin having an artiodactyl-type backbone of strain K-98. Phylogenetically, the various genes of the current study isolate also clustered inside clades comprising Human-Bovine-Caprine isolates from worldwide. The current findings add to the knowledge on caprine rotaviruses and might play a substantial role in designing future vaccines or different alternative strategies combating such infections having public health significance. To the best of our knowledge, this is the first report on the whole-genome characterization of a caprine RVA G8P[1] strain from India. Concerning the complex nature of the K-98 genome, whole-genome analyses of more numbers of RVA strains from different parts of the country are needed to comprehend the genomic nature and genetic diversity among caprine RVA.

12.
Pathogens ; 9(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580503

RESUMO

: Classical swine fever (CSF) is an economically significant, multi-systemic, highly contagious viral disease of swine world over. The disease is notifiable to the World Organization for Animal Health (OIE) due to its enormous consequences on porcine health and the pig industry. In India, the pig population is 9.06 million and contributes around 1.7% of the total livestock population. The pig industry is not well organized and is mostly concentrated in the eastern and northeastern states of the country (~40% of the country's population). Since the first suspected CSF outbreak in India during 1944, a large number of outbreaks have been reported across the country, and CSF has acquired an endemic status. As of date, there is a scarcity of comprehensive information on CSF from India. Therefore, in this review, we undertook a systematic review to compile and evaluate the prevalence and genetic diversity of the CSF virus situation in the porcine population from India, targeting particular virus genes sequence analysis, published reports on prevalence, pathology, and updates on indigenous diagnostics and vaccines. The CSF virus (CSFV) is genetically diverse, and at least three phylogenetic groups are circulating throughout the world. In India, though genotype 1.1 predominates, recently published reports point toward increasing evidence of co-circulation of sub-genotype 2.2 followed by 2.1. Sequence identities and phylogenetic analysis of Indian CSFV reveal high genetic divergence among circulating strains. In the meta-analysis random-effects model, the estimated overall CSF prevalence was 35.4%, encompassing data from both antigen and antibody tests, and region-wise sub-group analysis indicated variable incidence from 25% in the southern to nearly 40% in the central zone, eastern, and northeastern regions. A country-wide immunization approach, along with other control measures, has been implemented to reduce the disease incidence and eliminate the virus in time to come.

13.
Hum Vaccin Immunother ; 16(12): 2954-2962, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991235

RESUMO

COVID-19 caused by the virus SARS-CoV-2 has gripped essentially all countries in the world, and has infected millions and killed hundreds of thousands of people. Several innovative approaches are in development to restrain the spread of SARS-CoV-2. In particular, BCG, a vaccine against tuberculosis (TB), is being considered as an alternative therapeutic modality. BCG vaccine is known to induce both humoral and adaptive immunities, thereby activating both nonspecific and cross-reactive immune responses in the host, which combined could effectively resist other pathogens including SARS-CoV-2. Notably, some studies have revealed that SARS-CoV-2 infectivity, case positivity, and mortality rate have been higher in countries that have not adopted BCG vaccination than in countries that have done so. This review presents an overview of the concepts underlying BCG vaccination and its nonspecific immuological effects and protection, resulting in 'trained immunity' and potential utility for resisting COVID-19.


Assuntos
Vacina BCG/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Reposicionamento de Medicamentos/métodos , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Vacina BCG/imunologia , Vacina BCG/farmacologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/imunologia , Humanos , Pandemias , Tuberculose/imunologia , Tuberculose/prevenção & controle
14.
Mutat Res ; 673(2): 124-32, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19167512

RESUMO

Soil samples from agricultural fields (cultivated) in the vicinity of industrial area of Ghaziabad City (India) were collected. In this city, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the food crops. This practice has been polluting the soil and pollutants might reach the food chain. Gas chromatographic analysis show the presence of certain organochlorine (DDE, DDT, dieldrin, aldrin and endosulfan) and organophosphorus (dimethoate, malathion, methylparathion and chlorpyrifos) pesticides in soil samples. Samples were extracted using different solvents, i.e. methanol, chloroform, acetonitrile, hexane and acetone (all were HPLC-grade, SRL, India), and the extracts were assayed for genotoxic potential using Ames Salmonella/microsome test, DNA repair defective mutants and bacteriophage lambda systems. TA98 and TA100 were found to be the most sensitive strains to all the soil extracts tested. Methanol extracts exhibited a maximum mutagenicity with TA98 strain {540 (-S9) and 638 (+S9) revertants/g of soil} and 938 (-S9) and 1008 (+S9) revertants/g of soil with TA100 strain. The damage in the DNA repair defective mutants was found maximum with methanolic extract followed by acetonitrile, chloroform, hexane and acetone at the dose level of 40 microl/ml culture after 6h of treatment. The survival was 25, 30, 32, 33 and 35% in polA strain after 6h of treatment when tested with wastewater irrigated soil extracts of methanol, acetonitrile, chloroform, hexane and acetone, respectively. A significant decrease in the plaque forming units of bacteriophage lambda was also observed when treated with 40 microl of test samples. Present results showed that methanolic extracts of soil were more toxic than other soil extracts. The soil is accumulating a large number of pollutants due to wastewater irrigation and this practice of accumulation has an impact on soil health.


Assuntos
Agricultura , Resíduos Industriais/efeitos adversos , Indústrias , Poluentes do Solo/toxicidade , Solo/análise , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/fisiologia , Fracionamento Químico , Humanos , Índia , Testes de Mutagenicidade , Salmonella/efeitos dos fármacos , Salmonella/fisiologia , Poluentes do Solo/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
15.
Environ Toxicol ; 24(2): 103-15, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18442071

RESUMO

In most towns of India, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the agricultural crops. This practice has been polluting the soil, and pollutants could possibly reach the food chain. For the above reasons, the wastewaters of Ghaziabad City (India), which is used for irrigation, were sampled (at two different sites) and monitored for the presence of genotoxic agents from January 2005 to June 2007. Gas chromatographic analysis showed the presence of certain OC (DDE, DDT, Dieldrin, Aldrin, and Endosulfan) and OP (Dimethoate, Malathion, Methlyparathion, and Chlorpyrifos) pesticides in both the sampling sites. Wastewater samples were concentrated using XAD resins (XAD-4 and XAD-8) and liquid-liquid extraction procedures, and the extracts were assayed for genotoxic potential by Ames Salmonella/microsome test, DNA repair defective mutants, and bacteriophage lambda systems. The test samples exhibited significant mutagenicity with TA98, TA97a, and TA100 strains with the probable role of contaminating pesticides in the wastewater. However, XAD-concentrated samples were more mutagenic in both sites as compared to liquid-liquid-extracted samples. The damage in the DNA repair defective mutants in the presence of XAD-concentrated water samples were also found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 muL/mL culture. All the mutants invariably exhibited significant decline in their colony-forming units as compared to their isogenic wild-type counterparts. The survival was decreased by 81.7 and 75.5% in polA(-) strain in site I, and 76.0 and 73.5% in site II in polA(-) under the same experimental conditions after 6 h of treatment with XAD-concentrated and liquid-liquid-extracted samples, respectively. A significant decrease in the survival of bacteriophage lambda was also observed when treated with the test samples.


Assuntos
Monitoramento Ambiental/métodos , Mutagênicos/análise , Mutagênicos/toxicidade , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Fracionamento Químico , Cromatografia Gasosa , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Escherichia coli K12/fisiologia , Índia , Resíduos Industriais , Viabilidade Microbiana , Testes de Mutagenicidade , Praguicidas/análise , Praguicidas/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/fisiologia , Poluentes do Solo/toxicidade , Eliminação de Resíduos Líquidos
16.
Bioresour Technol ; 98(16): 3149-53, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17166714

RESUMO

Agricultural soil irrigated with industrial wastewater (more than two decades) analysed for heavy metals revealed high levels of Fe, Cr, Cu, Zn, Ni and Cd. Out of a total of 40 bacterial isolates obtained from these soils, 17 belonged to the family enterobacteriaceae and 10 were Pseudomonas spp. A maximum MIC of 200 for Cd, 400 for Zn and Cu, 800 for Ni, and 1600 microg/ml for Pb was observed. Biosorption of Ni and Cd studies over a range of metal ion concentrations with Escherichia coli WS11 both in single and bi-metal systems showed that the adsorption of Cd and Ni was dependent on the concentrations and followed the Freundlich adsorption isotherm. The biosorption of Ni increased from 6.96 to 55.31 mg/g of cells, and Cd from 4.96 to 45.37 mg/g of cells at a concentration ranging from 50 to 400 microg/ml after 2h of incubation in a single metal solution. A further increase in incubation time had no significant effect on the biosorption of metals.


Assuntos
Cádmio/metabolismo , Enterobacteriaceae/metabolismo , Escherichia coli/metabolismo , Resíduos Industriais , Níquel/metabolismo , Pseudomonas/metabolismo , Microbiologia do Solo , Adsorção , Agricultura , Biodegradação Ambiental , Enterobacteriaceae/isolamento & purificação , Escherichia coli/isolamento & purificação , Cinética , Pseudomonas/isolamento & purificação
17.
Indian J Exp Biol ; 44(1): 73-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16430095

RESUMO

Fungi including Aspergillus and Penicillium, resistant to Ni2+, Cd2+, and Cr6+ were isolated from soil receiving long-term application of municipal wastewater mix with untreated industrial effluents of Aligarh, India. Metal tolerance in term of minimum inhibitory concentration (MIC) was 125-550 microg/ml for Cd, 300-850 microg/ml for Ni and 300-600 microg/ml for Cr against test fungi. Two isolates, Aspergillus niger and Penicillium sp. were tested for their Cr, Ni and Cd biosorption potential using alkali treated, dried and powdered mycelium. Biosorption experiment was conducted in 100 ml of solution at three initial metal concentrations i.e., 2, 4 and 6 mM with contact time (18 hr) and pretreated fungal biomass (0.1g) at 25 degrees C. Biosorption of all metals was found higher at 4 mM initial metal concentration as compared to biosorption at 2 and 6 mM concentrations. At 4 mM initial metal concentration, chromium biosorption was 18.05 and 19.3 mg/g of Aspergillus and Penicillium biomasses, respectively. Similarly, biosorption of Cd and Ni ions was also maximum at 4 mM initial metal concentration by Aspergillus (19.4 mg/g for Cd and 25.05 mg/g of biomass for Ni) and Penicillium (18.6 mg/g for Cd and 17.9 mg/g of biomass for Ni). In general, biosorption of metal was influenced by initial metal concentration and type of the test fungi. The results indicated that fungi of metal contaminated soil have high level of metal tolerance and biosorption properties.


Assuntos
Aspergillus niger/metabolismo , Metais Pesados/metabolismo , Penicillium/metabolismo , Adsorção , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/isolamento & purificação , Cádmio/metabolismo , Cromo/metabolismo , Metais Pesados/toxicidade , Níquel/metabolismo , Penicillium/efeitos dos fármacos , Penicillium/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo/metabolismo , Soluções , Poluentes Químicos da Água/metabolismo
18.
Water Res ; 73: 277-90, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25687420

RESUMO

This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8 × 10(2) MPN/100 mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100 mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10(-4) arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5 × 10(2), 1.6 × 10(2), 4.4 × 10(2), 1.6 × 10(1) and 5.5 × 10(3) copies per mL of chlorinated effluent. Our study highlighted that potential risks associated with the reuse of treated wastewater arise not only from conventional fecal indicators or known pathogens, but also from antibiotic-resistant bacteria and genes.


Assuntos
Irrigação Agrícola/normas , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/normas , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Medição de Risco , Arábia Saudita , Análise de Sequência de DNA
19.
Sci Rep ; 5: 9001, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758166

RESUMO

Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality.


Assuntos
Água do Mar/microbiologia , Microbiologia da Água , Geografia , Humanos , Oceano Índico , Metagenoma , Microbiota , Dados de Sequência Molecular
20.
Antibiotics (Basel) ; 2(3): 367-99, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029309

RESUMO

Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA