Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Br J Haematol ; 204(6): 2194-2209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715390

RESUMO

This comprehensive guideline, developed by a representative group of UK-based medical experts specialising in haemoglobinopathies, addresses the management of conception and pregnancy in patients with thalassaemia. A systematic search of PubMed and EMBASE using specific keywords, formed the basis of the literature review. Key terms included "thalassaemia," "pregnancy," "Cooley's anaemia," "Mediterranean anaemia," and others, covering aspects such as fertility, iron burden and ultrasonography. The guideline underwent rigorous review by prominent organisations, including the Endocrine Society, the Royal College of Obstetricians and Gynaecologists (RCOG), the United Kingdom Thalassaemia Society and the British Society of Haematology (BSH) guideline writing group. Additional feedback was solicited from a sounding board of UK haematologists, ensuring a thorough and collaborative approach. The objective of the guideline is to equip healthcare professionals with precise recommendations for managing conception and pregnancy in patients with thalassaemia.


Assuntos
Complicações Hematológicas na Gravidez , Talassemia , Humanos , Gravidez , Feminino , Talassemia/terapia , Talassemia/complicações , Talassemia/diagnóstico , Complicações Hematológicas na Gravidez/terapia , Complicações Hematológicas na Gravidez/diagnóstico , Fertilização , Reino Unido
2.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
3.
RNA Biol ; 19(1): 176-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35067193

RESUMO

RNA-based therapeutics have entered the mainstream with seemingly limitless possibilities to treat all categories of neurological disease. Here, common RNA-based drug modalities such as antisense oligonucleotides, small interfering RNAs, RNA aptamers, RNA-based vaccines and mRNA drugs are reviewed highlighting their current and potential applications. Rapid progress has been made across rare genetic diseases and neurodegenerative disorders, but safe and effective delivery to the brain remains a significant challenge for many applications. The advent of individualized RNA-based therapies for ultra-rare diseases is discussed against the backdrop of the emergence of this field into more common conditions such as Alzheimer's disease and ischaemic stroke. There remains significant untapped potential in the use of RNA-based therapeutics for behavioural disorders and tumours of the central nervous system; coupled with the accelerated development expected over the next decade, the true potential of RNA-based therapeutics to transform the therapeutic landscape in neurology remains to be uncovered.


Assuntos
Terapia Genética , Doenças do Sistema Nervoso/terapia , RNA/genética , RNA/uso terapêutico , Animais , Aptâmeros de Nucleotídeos , Gerenciamento Clínico , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Doenças do Sistema Nervoso/etiologia , RNA/química , Interferência de RNA , RNA Interferente Pequeno , Terapêutica com RNAi , Reparo Gênico Alvo-Dirigido
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1922-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004969

RESUMO

Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of L- and D-alanine. Since D-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections.


Assuntos
Alanina Racemase/química , Clostridioides difficile/enzimologia , Farmacorresistência Bacteriana Múltipla , Sequência de Aminoácidos , Cromatografia em Gel , Clostridioides difficile/efeitos dos fármacos , Cristalografia por Raios X , Dimerização , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 287(36): 30653-63, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22782901

RESUMO

Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Compostos Azo , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos , Azul Tripano/química , Azul Tripano/farmacologia , Regulação Alostérica/efeitos dos fármacos , Antígenos de Diferenciação de Linfócitos B/química , Compostos Azo/química , Compostos Azo/farmacologia , Células Cultivadas , Fibroblastos/citologia , Antígenos de Histocompatibilidade Classe II/química , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína
6.
Mol Ther ; 20(2): 462-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22086232

RESUMO

We previously conducted a proof of principle; dose escalation study in Duchenne muscular dystrophy (DMD) patients using the morpholino splice-switching oligonucleotide AVI-4658 (eteplirsen) that induces skipping of dystrophin exon 51 in patients with relevant deletions, restores the open reading frame and induces dystrophin protein expression after intramuscular (i.m.) injection. We now show that this dystrophin expression was accompanied by an elevated expression of α-sarcoglycan, ß-dystroglycan (BDG) and--in relevant cases--neuronal nitric oxide synthase (nNOS) at the sarcolemma, each of which is a component of a different subcomplex of the dystrophin-associated glycoprotein complex (DAPC). As expected, nNOS expression was relocalized to the sarcolemma in Duchenne patients in whom the dystrophin deletion left the nNOS-binding domain (exons 42-45) intact, whereas this did not occur in patients with deletions that involved this domain. Our results indicate that the novel internally deleted and shorter dystrophin induced by skipping exon 51 in patients with amenable deletions, can also restore the dystrophin-associated complex, further suggesting preserved functionality of the newly translated dystrophin.


Assuntos
Processamento Alternativo , Complexo de Proteínas Associadas Distrofina/metabolismo , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofina/metabolismo , Terapia Genética , Humanos , Injeções Intramusculares , Morfolinos , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos/administração & dosagem
7.
Neuromuscul Disord ; 33(11): 835-844, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932186

RESUMO

We conducted a systematic literature review and meta-analysis on the effectiveness of vitamin D supplementation in maintaining or restoring vitamin D levels in Duchenne muscular dystrophy. Due to a lack of randomised controlled trials, cross-sectional and retrospective and prospective cohort studies were taken as the best available evidence. Inclusion criteria included reporting mean serum vitamin D levels in a supplement-taking group. After screening 102 records; 13 were included in a narrative synthesis and eight of these in a meta-analysis. We show that current dosing regimens are preventing severe deficiency but are not effective at maintaining sufficient vitamin D levels within the Duchenne population. Despite high levels of daily vitamin D supplementation (>1000 International Units), at least 20 % of people with Duchenne remain vitamin D deficient. No significant association between dose and serum vitamin D levels was found (r2 = 0.3, p = 0.237). A meta-analysis of mean serum vitamin D levels across eight studies also revealed substantial variability in response to vitamin D supplementation and high heterogeneity (I2 = 99.59 %). These data could impact on an individual's risk and severity of osteoporosis and vertebral fractures.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Estudos Transversais , Vitamina D/uso terapêutico , Vitaminas , Suplementos Nutricionais
8.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909469

RESUMO

Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In a first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP riboswitch reporter activity in efflux-deficient P. aeruginosa , allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and - proficient strain using high resolution LC-MS. This simple yet powerful method, optimized for high throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multi-drug resistant Gram-negative pathogen. Importance: Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multi-drug resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside, or enter the cell and are exported by efflux systems. This approach enables developing rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.

9.
mSphere ; 8(2): e0006923, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36946743

RESUMO

Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention, and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide-sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In the first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate) riboswitch reporter activity in efflux-deficient P. aeruginosa, allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and -proficient strain using high-resolution liquid chromatography-mass spectrometry (LC-MS). This simple yet powerful method, optimized for high-throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multidrug-resistant Gram-negative pathogen. IMPORTANCE Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multidrug-resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside or enter the cell and are exported by efflux systems. This approach enables the development of rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.


Assuntos
Pseudomonas aeruginosa , Riboswitch , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo
10.
Hum Gene Ther ; 34(9-10): 439-448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453228

RESUMO

Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibers that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibers or following genome editing, cell therapy, or microdystrophin delivery after adeno-associated viral gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual enzyme- linked immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 pediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one time point. All patients who had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ∼8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin, despite steroid treatment. Although these responses are relatively low level, this information should be considered a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing, and shipping samples from multiple centers to minimize the number of inconclusive data.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Criança , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Leucócitos Mononucleares/metabolismo , Linfócitos T/metabolismo , Músculo Esquelético/metabolismo
11.
Lancet ; 378(9791): 595-605, 2011 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-21784508

RESUMO

BACKGROUND: We report clinical safety and biochemical efficacy from a dose-ranging study of intravenously administered AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy. METHOD: We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5-15 years with amenable deletions in DMD. Participants had a muscle biopsy before starting treatment and after 12 weekly intravenous infusions of AVI-4658. The primary study objective was to assess safety and tolerability of AVI-4658. The secondary objectives were pharmacokinetic properties and the ability of AVI-4658 to induce exon 51 skipping and dystrophin restoration by RT-PCR, immunohistochemistry, and immunoblotting. The study is registered, number NCT00844597. FINDINGS: 19 patients took part in the study. AVI-4658 was well tolerated with no drug-related serious adverse events. AVI-4658 induced exon 51 skipping in all cohorts and new dystrophin protein expression in a significant dose-dependent (p=0·0203), but variable, manner in boys from cohort 3 (dose 2 mg/kg) onwards. Seven patients responded to treatment, in whom mean dystrophin fluorescence intensity increased from 8·9% (95% CI 7·1-10·6) to 16·4% (10·8-22·0) of normal control after treatment (p=0·0287). The three patients with the greatest responses to treatment had 21%, 15%, and 55% dystrophin-positive fibres after treatment and these findings were confirmed with western blot, which showed an increase after treatment of protein levels from 2% to 18%, from 0·9% to 17%, and from 0% to 7·7% of normal muscle, respectively. The dystrophin-associated proteins α-sarcoglycan and neuronal nitric oxide synthase were also restored at the sarcolemma. Analysis of the inflammatory infiltrate indicated a reduction of cytotoxic T cells in the post-treatment muscle biopsies in the two high-dose cohorts. INTERPRETATION: The safety and biochemical efficacy that we present show the potential of AVI-4658 to become a disease-modifying drug for Duchenne muscular dystrophy. FUNDING: UK Medical Research Council; AVI BioPharma.


Assuntos
Distrofina/metabolismo , Éxons/genética , Morfolinas/administração & dosagem , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Adolescente , Processamento Alternativo , Criança , Relação Dose-Resposta a Droga , Distrofina/genética , Humanos , Infusões Intravenosas , Masculino , Morfolinas/farmacocinética , Morfolinos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/farmacocinética
12.
Brain ; 134(Pt 12): 3547-59, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22102647

RESUMO

Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), ß-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Adolescente , Adulto , Idoso , Criança , Estudos de Coortes , Distrofina/metabolismo , Éxons , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fases de Leitura Aberta , Fenótipo , Estudos Retrospectivos , Índice de Gravidade de Doença
13.
Sci Rep ; 12(1): 3200, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217778

RESUMO

Alterations in the expression of the Duchenne muscular dystrophy (DMD) gene have been associated with the development, progression and survival outcomes of numerous cancers including tumours of the central nervous system. We undertook a detailed bioinformatic analysis of low-grade glioma (LGG) bulk RNAseq data to characterise the association between DMD expression and LGG survival outcomes. High DMD expression was significantly associated with poor survival in LGG with a difference in median overall survival between high and low DMD groups of over 7 years (P = < 0.0001). In a multivariate model, DMD expression remained significant (P = 0.02) and was an independent prognostic marker for LGG. The effect of DMD expression on overall survival was only apparent in isocitrate dehydrogenase (IDH) mutant cases where non-1p/19q co-deleted LGG patients could be further stratified into high/low DMD groups. Patients in the high DMD group had a median overall survival time almost halve that of the low DMD group. The expression of the individual DMD gene products Dp71, Dp71ab and Dp427m were also significantly associated with overall survival in LGG which have differential biological effects relevant to the pathogenesis of LGG. Differential gene expression and pathway analysis identifies dysregulated biological processes relating to ribosome biogenesis, synaptic signalling, neurodevelopment, morphogenesis and immune pathways. Genes spanning almost the entirety of chromosome 1p are upregulated in patients with high overall DMD, Dp71 and Dp427m expression which worsens survival outcomes for these patients. We confirmed dystrophin protein is variably expressed in LGG tumour tissue by immunohistochemistry and, overall, demonstrate that DMD expression has potential utility as an independent prognostic marker which can further stratify IDH mutant LGG to identify those at risk of poor survival. This knowledge may improve risk stratification and management of LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Distrofia Muscular de Duchenne , Biomarcadores/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Expressão Gênica , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Gradação de Tumores , Prognóstico
14.
Hum Mol Genet ; 18(17): 3266-73, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19498037

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-splicing (SMaRT) could be a method of choice to correct aberrant E10 splicing resulting from FTDP-17 mutations. SMaRT creates a hybrid mRNA through a trans-splicing reaction between an endogenous target pre-mRNA and a pre-trans-splicing RNA molecule (PTM). However, FTDP-17 mutations affect the strength of cis-splicing elements and could favor cis-splicing over trans-splicing. Excess E10 inclusion in FTDP-17 can be caused by intronic mutations destabilizing a stem-loop protecting the 5' splice site at the E10/intron 10 junction. COS cells transfected with a minigene containing the intronic +14 mutation produce exclusively E10(+) RNA. Generation of E10(-) RNA was restored after co-transfection with a PTM designed to exclude E10. Similar results were obtained with a target containing the exonic N279K mutation which strengthens a splicing enhancer within E10. Conversely, increase or decrease in E10 content was achieved by trans-splicing from a target carrying the Delta280K mutation, which weakens the same splicing enhancer. Thus E10 inclusion can be modulated by trans-splicing irrespective of the strength of the cis-splicing elements affected by FTDP-17 mutations. In conclusion, RNA trans-splicing could provide the basis of therapeutic strategies for impaired alternative splicing caused by pathogenic mutations in cis-acting splicing elements.


Assuntos
Mutação , Spliceossomos/metabolismo , Tauopatias/genética , Trans-Splicing , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Células COS , Chlorocebus aethiops , Éxons , Humanos , Spliceossomos/genética , Tauopatias/metabolismo
15.
J Immunol ; 183(1): 650-60, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19535627

RESUMO

West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.


Assuntos
Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Peptídeos/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade , Animais , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular , Reações Cruzadas , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Febre do Nilo Ocidental/terapia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia
16.
Cell Oncol (Dordr) ; 44(1): 19-32, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33188621

RESUMO

BACKGROUND: Mutation of the Duchenne muscular dystrophy (DMD) gene causes Duchenne and Becker muscular dystrophy, degenerative neuromuscular disorders that primarily affect voluntary muscles. However, increasing evidence implicates DMD in the development of all major cancer types. DMD is a large gene with 79 exons that codes for the essential muscle protein dystrophin. Alternative promotor usage drives the production of several additional dystrophin protein products with roles that extend beyond skeletal muscle. The importance and function(s) of these gene products outside of muscle are not well understood. CONCLUSIONS: We highlight a clear role for DMD in the pathogenesis of several cancers, including sarcomas, leukaemia's, lymphomas, nervous system tumours, melanomas and various carcinomas. We note that the normal balance of DMD gene products is often disrupted in cancer. The short dystrophin protein Dp71 is, for example, typically maintained in cancer whilst the full-length Dp427 gene product, a likely tumour suppressor, is frequently inactivated in cancer due to a recurrent loss of 5' exons. Therefore, the ratio of short and long gene products may be important in tumorigenesis. In this review, we summarise the tumours in which DMD is implicated and provide a hypothesis for possible mechanisms of tumorigenesis, although the question of cause or effect may remain. We hope to stimulate further study into the potential role of DMD gene products in cancer and the development of novel therapeutics that target DMD.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Neoplasias/genética , Animais , Distrofina/química , Predisposição Genética para Doença , Humanos , Modelos Biológicos
17.
J Virol ; 83(9): 4338-44, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244332

RESUMO

Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the "pH sensor" that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.


Assuntos
Vírus da Dengue/química , Vírus da Dengue/metabolismo , Fusão de Membrana , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Linhagem Celular , Cristalografia por Raios X , Vírus da Dengue/classificação , Vírus da Dengue/genética , Drosophila melanogaster , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Proteínas do Envelope Viral/genética
19.
Mol Neurobiol ; 57(3): 1748-1767, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31836945

RESUMO

Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.


Assuntos
Encéfalo/metabolismo , Distrofina/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Expressão Gênica/fisiologia , Humanos , Sinapses/metabolismo
20.
ACS Med Chem Lett ; 11(10): 1843-1847, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062162

RESUMO

Human Macrophage Migration Inhibitory Factor (MIF) is a trimeric cytokine implicated in a number of inflammatory and autoimmune diseases and cancer. We previously reported that the dye p425 (Chicago Sky Blue), which bound MIF at the interface of two MIF trimers covering the tautomerase and allosteric pockets, revealed a unique strategy to block MIF's pro-inflammatory activities. Structural liabilities, including the large size, precluded p425 as a medicinal chemistry lead for drug development. We report here a rational design strategy linking only the fragment of p425 that binds over the tautomerase pocket to the core of ibudilast, a known MIF allosteric site-specific inhibitor. The chimeric compound, termed L2-4048, was shown by X-ray crystallography to bind at the allosteric and tautomerase sites as anticipated. L2-4048 retained target binding and blocked MIF's tautomerase CD74 receptor binding, and pro-inflammatory activities. Our studies lay the foundation for the design and synthesis of smaller and more drug-like compounds that retain the MIF inhibitory properties of this chimera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA