Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546978

RESUMO

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Assuntos
Dasatinibe , Células Endoteliais , Canais de Potássio de Domínios Poros em Tandem , Dasatinibe/farmacologia , Dasatinibe/efeitos adversos , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Movimento Celular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas do Tecido Nervoso
2.
Eur Respir J ; 63(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697649

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) has been described in patients treated with proteasome inhibitors (PIs). Our objective was to evaluate the association between PIs and PAH. METHODS: Characteristics of incident PAH cases previously treated with carfilzomib or bortezomib were analysed from the French pulmonary hypertension registry and the VIGIAPATH programme from 2004 to 2023, concurrently with a pharmacovigilance disproportionality analysis using the World Health Organization (WHO) global database (VigiBase) and a meta-analysis of randomised controlled trials. RESULTS: 11 incident cases of PI-associated PAH were identified (six with carfilzomib and five with bortezomib) with a female:male ratio of 2.7:1, a median age of 61 years, and a median delay between PI first exposure and PAH of 6 months. Four patients died (two from right heart failure, one from respiratory distress and one from an unknown cause). At diagnosis, six were in New York Heart Association Functional Class III/IV with severe haemodynamic impairment (median mean pulmonary arterial pressure 39 mmHg, cardiac index 2.45 L·min-1·m-2 and pulmonary vascular resistance 7.2 WU). In the WHO pharmacovigilance database, 169 cases of PH associated with PI were reported since 2013 with significant signals of disproportionate reporting (SDR) for carfilzomib, regardless of the definition of cases or control group. However, SDR for bortezomib were inconsistent. The systematic review identified 17 clinical trials, and carfilzomib was associated with a significantly higher risk of dyspnoea, severe dyspnoea and PH compared with bortezomib. CONCLUSION: PIs may induce PAH in patients undergoing treatment, with carfilzomib emitting a stronger signal than bortezomib, and these patients should be monitored closely.


Assuntos
Bortezomib , Oligopeptídeos , Inibidores de Proteassoma , Hipertensão Arterial Pulmonar , Humanos , Pessoa de Meia-Idade , Bortezomib/efeitos adversos , Bortezomib/uso terapêutico , França/epidemiologia , Oligopeptídeos/efeitos adversos , Oligopeptídeos/uso terapêutico , Farmacovigilância , Inibidores de Proteassoma/efeitos adversos , Inibidores de Proteassoma/uso terapêutico , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/induzido quimicamente , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema de Registros
3.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514094

RESUMO

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Telangiectasia Hemorrágica Hereditária , Humanos , Masculino , Feminino , Adulto , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/complicações , Hipertensão Pulmonar Primária Familiar , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Fenótipo , Fator 2 de Diferenciação de Crescimento/genética , Estudos Multicêntricos como Assunto
4.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36164973

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Assuntos
Compostos de Anilina , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Tiadiazóis , Animais , Humanos , Ratos , Compostos de Anilina/uso terapêutico , Calcineurina/metabolismo , Cálcio/metabolismo , Proliferação de Células/genética , Células Cultivadas , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/metabolismo , MAP Quinase Quinase 1/metabolismo , Monocrotalina/toxicidade , Miócitos de Músculo Liso/metabolismo , Proteína ORAI1 , Artéria Pulmonar/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Tiadiazóis/metabolismo
5.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125620

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.


Assuntos
MicroRNAs , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Função Ventricular Direita , Animais , Humanos , Masculino , Camundongos , Ratos , Proliferação de Células/genética , Modelos Animais de Doenças , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Monocrotalina , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular/genética
6.
J Physiol ; 601(17): 3717-3737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477289

RESUMO

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Assuntos
Fibrilação Atrial , Canais de Potássio de Domínios Poros em Tandem , Hipertensão Arterial Pulmonar , Humanos , Circulação Pulmonar , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Potenciais da Membrana , Pulmão/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L246-L261, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366608

RESUMO

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Canais de Potencial de Receptor Transitório , Humanos , Ratos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Cálcio/metabolismo
8.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33468626

RESUMO

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
9.
Am J Respir Cell Mol Biol ; 66(5): 539-554, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35175177

RESUMO

Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analyzed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by three different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. In addition, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still present. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof of concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.


Assuntos
Diazóxido , Hipertensão Arterial Pulmonar , Animais , Diazóxido/farmacologia , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Ratos
10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012204

RESUMO

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Dobramento de Proteína , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Espectrometria de Massas , Mutação
11.
Circulation ; 141(3): 199-216, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31906693

RESUMO

BACKGROUND: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/metabolismo , Função Ventricular Esquerda , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Proteína ORAI1/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
12.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33926975

RESUMO

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Hipertensão Arterial Pulmonar , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Endoteliais , Humanos , Monocrotalina , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Ratos , Suínos
13.
Circ Res ; 125(7): 678-695, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31347976

RESUMO

RATIONALE: Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE: We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS: Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS: We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar/genética , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Potenciais de Ação , Animais , Pressão Sanguínea , Feminino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismo , Vasoconstrição , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
14.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209028

RESUMO

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Assuntos
Pneumopatia Veno-Oclusiva/metabolismo , Pneumopatia Veno-Oclusiva/patologia , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Mutação/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos , Transdução de Sinais/fisiologia , Fator de Transcrição CHOP/metabolismo
15.
Circulation ; 139(7): 932-948, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586714

RESUMO

BACKGROUND: Monoallelic mutations in the gene encoding bone morphogenetic protein receptor 2 ( Bmpr2) are the main genetic risk factor for heritable pulmonary arterial hypertension (PAH) with incomplete penetrance. Several Bmpr2 transgenic mice have been reported to develop mild spontaneous PAH. In this study, we examined whether rats with the Bmpr2 mutation were susceptible to developing more severe PAH. METHODS: The zinc finger nuclease method was used to establish rat lines with mutations in the Bmpr2 gene. These rats were then characterized at the hemodynamic, histological, electrophysiological, and molecular levels. RESULTS: Rats with a monoallelic deletion of 71 bp in exon 1 (Δ 71 rats) showed decreased BMPRII expression and phosphorylated SMAD1/5/9 levels. Δ 71 Rats develop age-dependent spontaneous PAH with a low penetrance (16%-27%), similar to that in humans. Δ 71 Rats were more susceptible to hypoxia-induced pulmonary hypertension than wild-type rats. Δ 71 Rats exhibited progressive pulmonary vascular remodeling associated with a proproliferative phenotype and showed lower pulmonary microvascular density than wild-type rats. Organ bath studies revealed severe alteration of pulmonary artery contraction and relaxation associated with potassium channel subfamily K member 3 (KCNK3) dysfunction. High levels of perivascular fibrillar collagen and pulmonary interleukin-6 overexpression discriminated rats that developed spontaneous PAH and rats that did not develop spontaneous PAH. Finally, detailed assessments of cardiomyocytes demonstrated alterations in morphology, calcium (Ca2+), and cell contractility specific to the right ventricle; these changes could explain the lower cardiac output of Δ 71 rats. Indeed, adult right ventricular cardiomyocytes from Δ 71 rats exhibited a smaller diameter, decreased sensitivity of sarcomeres to Ca2+, decreased [Ca2+] transient amplitude, reduced sarcoplasmic reticulum Ca2+ content, and short action potential duration compared with right ventricular cardiomyocytes from wild-type rats. CONCLUSIONS: We characterized the first Bmpr2 mutant rats and showed some of the critical cellular and molecular dysfunctions described in human PAH. We also identified the heart as an unexpected but potential target organ of Bmpr2 mutations. Thus, this new genetic rat model represents a promising tool to study the pathogenesis of PAH.


Assuntos
Pressão Arterial/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Mutação , Contração Miocárdica/genética , Artéria Pulmonar/fisiopatologia , Função Ventricular Direita/genética , Potenciais de Ação , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Sinalização do Cálcio , Modelos Animais de Doenças , Predisposição Genética para Doença , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Artéria Pulmonar/metabolismo , Ratos Mutantes , Proteínas Smad/metabolismo
16.
Respir Res ; 21(1): 186, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678044

RESUMO

BACKGROUND: The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions. METHODS AND RESULTS: MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH). MiR-138-5p is predicted to regulate the expression of the potassium channel KCNK3, whose loss is associated with the development and progression of PAH. We hypothesized that, in vivo, miR-138-5p inhibition would restore KCNK3 lung expression and subsequently alleviate PAH. Nebulization-based delivery of anti-miR-138-5p to rats with established MCT-PH significantly reduced the right ventricular systolic pressure and significantly improved the pulmonary arterial acceleration time (PAAT). These haemodynamic improvements were related to decrease pulmonary vascular remodelling, lung inflammation and pulmonary vascular cell proliferation in situ. In vivo inhibition of miR-138-5p restored KCNK3 mRNA expression and SLC45A3 protein expression in the lungs. CONCLUSIONS: We confirmed that in vivo inhibition of miR-138-5p reduces the development of PH in experimental MCT-PH. The possible curative mechanisms involve at least the normalization of lung KCNK3 as well as SLC45A3 expression.


Assuntos
Antagomirs/administração & dosagem , Pressão Arterial , MicroRNAs/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Hipertensão Arterial Pulmonar/prevenção & controle , Artéria Pulmonar/metabolismo , Administração por Inalação , Animais , Antagomirs/genética , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Monocrotalina , Proteínas de Transporte de Monossacarídeos/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Transdução de Sinais , Remodelação Vascular
17.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036472

RESUMO

The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.


Assuntos
Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteoma , Proteômica , Artéria Pulmonar , Transdução de Sinais , Biomarcadores , Células Cultivadas , Biologia Computacional/métodos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Proteômica/métodos , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo
20.
Circulation ; 137(22): 2371-2389, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29444988

RESUMO

BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.


Assuntos
Ácido Glutâmico/metabolismo , Hipertensão Pulmonar/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelação Vascular , Animais , Apoptose/efeitos dos fármacos , Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Endotelina-1/farmacologia , Humanos , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA