RESUMO
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genéticaRESUMO
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Assuntos
Microcefalia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células HEK293 , Serina-Treonina Quinases TORRESUMO
GABAB receptors are obligatory heterodimers responsible for prolonged neuronal inhibition in the central nervous system. The two receptor subunits are encoded by GABBR1 and GABBR2. Variants in GABBR2 have been associated with a Rett-like phenotype (MIM: 617903), epileptic encephalopathy (MIM: 617904), and milder forms of developmental delay with absence epilepsy. To date, however, no phenotypes associated with pathogenic variants of GABBR1 have been established. Through GeneMatcher, we have ascertained four individuals who each have a monoallelic GABBR1 de novo non-synonymous variant; these individuals exhibit motor and/or language delay, ranging from mild to severe, and in one case, epilepsy. Further phenotypic features include varying degrees of intellectual disability, learning difficulties, autism, ADHD, ODD, sleep disorders, and muscular hypotonia. We functionally characterized the four de novo GABBR1 variants, p.Glu368Asp, p.Ala397Val, p.Ala535Thr, and p.Gly673Asp, in transfected HEK293 cells. GABA fails to efficiently activate the variant receptors, most likely leading to an increase in the excitation/inhibition balance in the central nervous system. Variant p.Gly673Asp in transmembrane domain 3 (TMD3) renders the receptor completely inactive, consistent with failure of the receptor to reach the cell surface. p.Glu368Asp is located near the orthosteric binding site and reduces GABA potency and efficacy at the receptor. GABA exhibits normal potency but decreased efficacy at the p.Ala397Val and p.Ala535Thr variants. Functional characterization of GABBR1-related variants provides a rationale for understanding the severity of disease phenotypes and points to possible therapeutic strategies.
Assuntos
Epilepsia , Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Receptores de GABA-B , Humanos , Epilepsia/genética , Ácido gama-Aminobutírico/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-B/genéticaRESUMO
The complete, ungapped sequence of the short arms of human acrocentric chromosomes (SAACs) is still unknown almost 20 years after the near completion of the Human Genome Project. Yet these short arms of Chromosomes 13, 14, 15, 21, and 22 contain the ribosomal DNA (rDNA) genes, which are of paramount importance for human biology. The sequences of SAACs show an extensive variation in the copy number of the various repetitive elements, the full extent of which is currently unknown. In addition, the full spectrum of repeated sequences, their organization, and the low copy number functional elements are also unknown. The Telomere-to-Telomere (T2T) Project using mainly long-read sequence technology has recently completed the assembly of the genome from a hydatidiform mole, CHM13, and has thus established a baseline reference for further studies on the organization, variation, functional annotation, and impact in human disorders of all the previously unknown genomic segments, including the SAACs. The publication of the initial results of the T2T Project will update and improve the reference genome for a better understanding of the evolution and function of the human genome.
Assuntos
Cromossomos Humanos , Genoma Humano , Sequência de Bases , Cromossomos Humanos/genética , DNA Ribossômico/genética , Feminino , Projeto Genoma Humano , Humanos , GravidezRESUMO
Technological and other advances over the past decades have led to the discovery of thousands of gene-disease associations for autosomal and X-linked recessive Mendelian disorders. Combined with recent improvements in assessing individual variants in each human genome, these developments offer the possibility of testing populations for all known severe recessive genetic disorders. Past experience has provided the framework for expanded carrier screening, but many challenges remain regarding which disorders to include, how to interpret variants and how to incorporate newly discovered gene-disease links into existing screening programmes.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Genoma Humano/genética , Heterozigoto , Humanos , Programas de Rastreamento/métodosRESUMO
CoverageMaster (CoM) is a copy number variation (CNV) calling algorithm based on depth-of-coverage maps designed to detect CNVs of any size in exome [whole exome sequencing (WES)] and genome [whole genome sequencing (WGS)] data. The core of the algorithm is the compression of sequencing coverage data in a multiscale Wavelet space and the analysis through an iterative Hidden Markov Model. CoM processes WES and WGS data at nucleotide scale resolution and accurately detects and visualizes full size range CNVs, including single or partial exon deletions and duplications. The results obtained with this approach support the possibility for coverage-based CNV callers to replace probe-based methods such as array comparative genomic hybridization and multiplex ligation-dependent probe amplification in the near future.
Assuntos
Variações do Número de Cópias de DNA , Exoma , Hibridização Genômica Comparativa/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento do Exoma , Sequenciamento Completo do GenomaRESUMO
The p21-activated kinase (PAK) family of proteins regulates various processes requiring dynamic cytoskeleton organization such as cell adhesion, migration, proliferation, and apoptosis. Among the six members of the protein family, PAK2 is specifically involved in apoptosis, angiogenesis, or the development of endothelial cells. We report a novel de novo heterozygous missense PAK2 variant, p.(Thr406Met), found in a newborn with clinical manifestations of Knobloch syndrome. In vitro experiments indicated that this and another reported variant, p.(Asp425Asn), result in substantially impaired protein kinase activity. Similar findings were described previously for the PAK2 p.(Glu435Lys) variant found in two siblings with proposed Knobloch syndrome type 2 (KNO2). These new variants support the association of PAK2 kinase deficiency with a second, autosomal dominant form of Knobloch syndrome: KNO2.
Assuntos
Quinases Ativadas por p21 , Humanos , Quinases Ativadas por p21/genética , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Descolamento Retiniano/congênito , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Masculino , Recém-Nascido , Feminino , Mutação de Sentido Incorreto/genética , EncefaloceleRESUMO
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germ-line mosaicism in one of the parents; the mosaicism, however, could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant that is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism-related gene. Our results show that PAK2-induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Assuntos
Degeneração Retiniana , Descolamento Retiniano , Encefalocele/diagnóstico , Encefalocele/genética , Encefalocele/patologia , Células HEK293 , Humanos , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Descolamento Retiniano/congênito , Descolamento Retiniano/genética , Quinases Ativadas por p21/genéticaRESUMO
KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.
Assuntos
Atrofia/genética , Doenças Cerebelares/genética , Deficiência Intelectual/genética , Lisina Acetiltransferase 5/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Atrofia/diagnóstico por imagem , Atrofia/fisiopatologia , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/fisiopatologia , Pré-Escolar , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Heterozigoto , Histonas/genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Processamento de Proteína Pós-Traducional/genéticaRESUMO
PURPOSE: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS: We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Homozigoto , Transtornos do Neurodesenvolvimento/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , Linhagem , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismoRESUMO
Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.
Assuntos
Síndrome de Down/genética , Dosagem de Genes , Regulação da Expressão Gênica , Variação Genética/genética , Animais , Genoma , Humanos , Camundongos , FenótipoRESUMO
The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a ß-type proteasome subunit (i.e. ß6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/ß6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/ß6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/ß6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.
Assuntos
Nanismo/genética , Microcefalia/genética , Complexo de Endopeptidases do Proteassoma/genética , Alelos , Animais , Criança , Consanguinidade , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Nanismo/complicações , Feminino , Homozigoto , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Microcefalia/complicações , Microcefalia/patologia , Modelos Moleculares , Linhagem , Fenótipo , Peixe-Zebra/genéticaRESUMO
In a consanguineous Pakistani family with two affected individuals, a homozygous variant Gly399Val in the eighth transmembrane domain of the taurine transporter SLC6A6 was identified resulting in a hypomorph transporting capacity of ~15% compared with normal. Three-dimensional modeling of this variant has indicated that it likely causes displacement of the Tyr138 (TM3) side chain, important for transport of taurine. The affected individuals presented with rapidly progressive childhood retinal degeneration, cardiomyopathy and almost undetectable plasma taurine levels. Oral taurine supplementation of 100 mg/kg/day resulted in maintenance of normal blood taurine levels. Following approval by the ethics committee, a long-term supplementation treatment was introduced. Remarkably, after 24-months, the cardiomyopathy was corrected in both affected siblings, and in the 6-years-old, the retinal degeneration was arrested, and the vision was clinically improved. Similar therapeutic approaches could be employed in Mendelian phenotypes caused by the dysfunction of the hundreds of other molecular transporters.
Assuntos
Cardiomiopatias/tratamento farmacológico , Glicoproteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras/deficiência , Degeneração Retiniana/tratamento farmacológico , Taurina/uso terapêutico , Adolescente , Transporte Biológico , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Criança , Feminino , Humanos , Masculino , Linhagem , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologiaRESUMO
Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.
Assuntos
Anormalidades Craniofaciais/etiologia , Dineínas/genética , Deficiência Intelectual/etiologia , Malformações Arteriovenosas Intracranianas/etiologia , Microcefalia/etiologia , Mutação , Peixe-Zebra/crescimento & desenvolvimento , Adulto , Alelos , Sequência de Aminoácidos , Animais , Pré-Escolar , Anormalidades Craniofaciais/patologia , Dineínas/química , Dineínas/metabolismo , Exoma , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.
Assuntos
Deficiências do Desenvolvimento/genética , Nanismo/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Mutação/genética , Adulto , Alelos , Animais , Criança , Espinhas Dendríticas/genética , Drosophila/genética , Feminino , Humanos , Masculino , Camundongos , Arábia Saudita , Sinapses/genética , Adulto JovemRESUMO
PURPOSE: Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is characterized by congenital absence of the uterus, cervix, and the upper part of the vagina in females. Whole-gene deletion and loss-of-function variants in TBX6 have been identified in association with MRKHS. We aimed to expand the spectrum of TBX6 variants in MRKHS and explore the biological effect of the variant alleles. METHODS: Rare variants in TBX6 were called from a combined multiethnic cohort of 622 probands with MRKHS who underwent exome sequencing or genome sequencing. Multiple in vitro functional experiments were performed, including messenger RNA analysis, western blotting, transcriptional activity assay, and immunofluorescence staining. RESULTS: We identified 16 rare variants in TBX6 from the combined cohort, including 1 protein-truncating variant reported in our previous study and 15 variants with unknown effects. By comparing the prevalence of TBX6 variants in the Chinese MRKHS cohort vs 1038 female controls, we observed a significant mutational burden of TBX6 in affected individuals (P = .0004, odds ratio = 5.25), suggesting a causal role of TBX6 variants in MRKHS. Of the 15 variants with uncertain effects, 7 were shown to induce a loss-of-function effect through various mechanisms. The c.423G>A (p.Leu141=) and c.839+5G>A variants impaired the normal splicing of TBX6 messenger RNA, c.422T>C (p.Leu141Pro) and c.745G>A (p.Val249Met) led to decreased protein expression, c.10C>T (p.Pro4Ser) and c.400G>A (p.Glu134Lys) resulted in perturbed transcriptional activity, and c.356G>A (p.Arg119His) caused protein mislocalization. We observed incomplete penetrance and variable expressivity in families carrying deleterious variants, which indicates a more complex genetic mechanism than classical Mendelian inheritance. CONCLUSION: Our study expands the mutational spectrum of TBX6 in MRKHS and delineates the molecular pathogenesis of TBX6 variants, supporting the association between deleterious variants in TBX6 and MRKHS.
Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Feminino , Humanos , Transtornos 46, XX do Desenvolvimento Sexual/genética , Ductos Paramesonéfricos/anormalidades , Vagina/anormalidades , RNA Mensageiro , Anormalidades Congênitas/genética , Proteínas com Domínio T/genéticaRESUMO
PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Fosfoproteínas , Fatores de Transcrição , Regulação da Expressão Gênica , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fosfoproteínas/genética , Fatores de Transcrição/genéticaRESUMO
Missense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability, but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss of function using KO mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo Here, we developed an in vitro, gain-of-function assay for Kirrel3 using neuron cultures prepared from male and female mice and rats. We find that WT Kirrel3 induces synapse formation selectively between Kirrel3-expressing neurons via homophilic, transcellular binding. We tested six disease-associated Kirrel3 missense variants and found that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to WT Kirrel3. Two tested variants lack homophilic transcellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating that Kirrel3 transcellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to the mechanism of Kirrel3 function and the consequences of missense variants associated with autism and intellectual disability.SIGNIFICANCE STATEMENT Here, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 transcellular interactions mediate target recognition and signaling to promote synapse development. Moreover, this study tests the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, increases understanding of the complex etiology of neurodevelopmental disorders arising from rare missense variants in synaptic genes.
Assuntos
Hipocampo/metabolismo , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Feminino , Hipocampo/citologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , RatosRESUMO
We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.
Assuntos
Proteínas CELF , Epilepsia , Deficiência Intelectual , Proteínas do Tecido Nervoso , Proteínas CELF/genética , Epilepsia/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Sinais de Localização Nuclear/genética , Proteínas de Ligação a RNA/genéticaRESUMO
FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.