Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
J Neurooncol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207625

RESUMO

PURPOSE: Brain tumors, particularly glioblastoma multiforme (GBM), present significant prognostic challenges despite multimodal therapies, including surgical resection, chemotherapy, and radiotherapy. One major obstacle is the limited drug delivery across the blood-brain barrier (BBB). Focused ultrasound (FUS) combined with systemically administered microbubbles has emerged as a non-invasive, targeted, and reversible approach to transiently open the BBB, thus enhancing drug delivery. This review examines clinical trials employing BBB opening techniques to optimise pharmacotherapy for brain tumors, evaluates current challenges, and proposes directions for further research. METHODS: A systematic literature search was conducted in PubMed and ClinicalTrials.gov up to November 2023, searching for "ultrasound" AND "brain tumor". The search yielded 1446 results. After screening by title and abstract, followed by full-text screening (n = 48), 35 studies were included in the analysis. RESULTS: Our analysis includes data from 11 published studies and 24 ongoing trials. The predominant focus of these studies is on glioma, including GMB and astrocytoma. One paper investigated brain metastasis from breast cancer. Evidence indicates that FUS facilitates BBB opening and enhances drug uptake following sonication. Exploration of FUS in the pediatric population is limited, with no published studies and only three ongoing trials dedicated to this demographic. CONCLUSION: FUS is a promising strategy to safely disrupt the BBB, enabling precise and non-invasive lesion targeting, and enhance drug delivery. However, pharmacokinetic studies are required to quantitatively assess improvements in drug uptake. Most studies are phase I clinical trials, and long-term follow-up investigating patient outcomes is essential to evaluate the clinical benefit of this treatment approach. Further studies involving diverse populations and pathologies will be beneficial.

2.
Am J Otolaryngol ; 45(1): 104097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37952257

RESUMO

PURPOSE: Rhinoplasty is amongst the most challenging surgeries to perfect and can take decades. This process begins during residency; however, residents often have limited exposure to rhinoplasty during their training and lack a standardized method for systematically analyzing and formulating a surgical plan. The DESS (Deformity, Etiology, Solution, Sequence) is a novel educational format for residents that serves to increase their pre-operative comfort with the surgical evaluation and intraoperative planning for a rhinoplasty. MATERIALS AND METHODS: A qualitative study performed at a tertiary academic institution with an otolaryngology residency program evaluating three consecutive residency classes comprised of four residents per class. A 9-item questionnaire was distributed to measure change in resident comfort after utilizing the DESS during their facial plastics rotation. Questionnaire responses highlighted resident comfort with facial nasal analysis, identifying deformities, suggesting surgical maneuvers, and synthesizing a comprehensive surgical plan. RESULTS: Ten of the twelve residents surveyed responded. Of those that responded, comfort in facial nasal analysis, identification of common nasal deformities, surgical planning, and development of an overall surgical plan were significantly improved after completion of the facial plastic rotation. These residents largely attributed their success to the systematic educational format, with an average score of 4.8/5.0 (SD 0.42). CONCLUSION: While rhinoplasty is a challenging artform to master, systematic approaches to analysis and operative planning are vital for teaching and guiding residents. Through this novel methodology, residents display significant improvement in their comfort with facial nasal analysis and overall surgical preparation.


Assuntos
Internato e Residência , Doenças Nasais , Rinoplastia , Humanos , Rinoplastia/métodos , Nariz/cirurgia , Educação de Pós-Graduação em Medicina/métodos , Doenças Nasais/cirurgia
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612628

RESUMO

It is widely acknowledged that mechanical forces exerted throughout the human body are critical for cellular and tissue homeostasis [...].


Assuntos
Mecanotransdução Celular , Humanos
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473834

RESUMO

In the intricate landscape of human biology, the mechanistic target of rapamycin (mTOR) emerges as a key regulator, orchestrating a vast array of processes in health and disease [...].


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos
6.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791330

RESUMO

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Mecanotransdução Celular , Canais de Cátion TRPP , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética , Animais , Osso e Ossos/metabolismo , Remodelação Óssea , Regeneração Óssea , Osteócitos/metabolismo
7.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373314

RESUMO

Exosomes constitute small extracellular vesicles that contain lipids, proteins, nucleic acids, and glycoconjugates from the secreted cells and are capable of transmitting signals between cells and coordinating cellular communication. By this means, they are ultimately involved in physiology and disease, including development, homeostasis, and immune system regulation, as well as contributing to tumor progression and neurodegenerative diseases pathology. Recent studies have shown that gliomas secrete a panel of exosomes which have been associated with cell invasion and migration, tumor immune tolerance, potential for malignant transformation, neovascularization, and resistance to treatment. Exosomes have therefore emerged as intercellular communicators, which mediate the tumor-microenvironment interactions and exosome-regulated glioma cell stemness and angiogenesis. They may induce tumor proliferation and malignancy in normal cells by carrying pro-migratory modulators from cancer cells as well as many different molecular cancer modifiers, such as oncogenic transcripts, miRNAs, mutant oncoproteins, etc., which promote the communication of cancer cells with the surrounding stromal cells and provide valuable information on the molecular profile of the existing tumor. Moreover, engineered exosomes can provide an alternative system for drug delivery and enable efficient treatment. In the present review, we discuss the latest findings regarding the role of exosomes in glioma pathogenesis, their utility in non-invasive diagnosis, and potential applications to treatment.


Assuntos
Exossomos , Vesículas Extracelulares , Glioma , Neoplasias , Humanos , Exossomos/metabolismo , Glioma/diagnóstico , Glioma/terapia , Glioma/metabolismo , Neoplasias/patologia , Vesículas Extracelulares/metabolismo , Comunicação Celular/fisiologia , Biomarcadores/metabolismo , Microambiente Tumoral/fisiologia
8.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762384

RESUMO

Cognitive and physical decline, both indicators of aging, seem to be associated with each other. The aim of the present study was to investigate whether physical function parameters (walking time and handgrip strength) are related to cerebrospinal fluid (CSF) biomarkers (amyloid-beta Aß42, Tau, PhTau) in individuals in the Alzheimer's disease (AD) continuum. The sample was drawn from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration study, comprising 163 individuals aged 40-75 years: 112 cognitively normal (CN) and 51 with mild cognitive impairment (MCI). Physical function parameters were measured at baseline, a lumbar puncture was performed the same day and CSF biomarkers were analyzed using automated methods. The association between walking time, handgrip strength and CSF biomarkers was evaluated by linear correlation, followed by multivariate linear regression models adjusted for age, sex, education and APOEe4 genotype. Walking time was inversely related to CSF Aß42 (lower CSF values correspond to increased brain deposition) in all participants (p < 0.05). Subgroup analysis showed that this association was stronger in individuals with MCI and participants older than 60 years old, a result which remained statistically significant after adjustment for the aforementioned confounding factors. These findings may open new perspectives regarding the role of mobility in the AD continuum.


Assuntos
Doença de Alzheimer , Humanos , Pessoa de Meia-Idade , Força da Mão , Punção Espinal , Peptídeos beta-Amiloides , Biomarcadores
9.
J Cell Mol Med ; 26(5): 1699-1709, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35106909

RESUMO

The mechanobiological aspects of glioblastoma (GBM) pathogenesis are largely unknown. Polycystin-1 (PC1) is a key mechanosensitive protein which perceives extracellular mechanical cues and transforms them into intracellular biochemical signals that elicit a change in cell behaviour. The aim of the present study was to investigate if and how PC1 participates in GBM pathogenesis under a mechanically induced microenvironment. Therefore, we subjected T98G GBM cells to continuous hydrostatic pressure (HP) and/or PC1 blockade and evaluated their effect on cell behaviour, the activity of signalling pathways and the expression of mechano-induced transcriptional regulators and markers associated with properties of cancer cells. According to our data, PC1 and HP affect GBM cell proliferation, clonogenicity and migration; the diameter of GBM spheroids; the phosphorylation of mechanistic target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK); the protein expression of transcription cofactors YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ); and the mRNA expression of markers related to anti-apoptosis, apoptosis, angiogenesis, epithelial to mesenchymal transition (EMT) and proliferation. Together, our in vitro results suggest that PC1 plays an important role in GBM mechanobiology.


Assuntos
Glioblastoma , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Glioblastoma/patologia , Humanos , Pressão Hidrostática , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
10.
J Cell Mol Med ; 26(8): 2428-2437, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35285136

RESUMO

Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens' life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis.


Assuntos
Craniossinostoses , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Criança , Craniossinostoses/genética , Craniossinostoses/metabolismo , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
11.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163745

RESUMO

Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.


Assuntos
Mecanotransdução Celular , Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Proliferação de Células , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
12.
Medicina (Kaunas) ; 58(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36143858

RESUMO

Background and Objectives: This article presents data from the ongoing Aiginition Longitudinal Biomarker Investigation of Neurodegeneration study (ALBION) regarding baseline clinical characterizations and CSF biomarker profiles, as well as preliminary longitudinal data on clinical progression. Materials and Methods: As of March 2022, 138 participants who either were cognitively normal (CN, n = 99) or had a diagnosis of mild cognitive impairment (MCI, n = 39) had been recruited at the specialist cognitive disorders outpatient clinic at Aiginition Hospital. Clinical characteristics at baseline were provided. These patients were followed annually to determine progression from CN to MCI or even dementia. CSF biomarker data (amyloid ß1-42, phosphorylated tau at threonine 181, and total tau) collected using automated Elecsys® assays (Roche Diagnostics) were available for 74 patients. These patients were further sorted based on the AT(N) classification model, as determined by CSF Aß42 (A), CSF pTau (T), and CSF tTau (N). Results: Of the 49 CN patients with CSF biomarker data, 21 (43%) were classified as exhibiting "Alzheimer's pathologic change" (A+Τ− (Ν)−) and 6 (12%) as having "Alzheimer's disease" (A+T−(N)+, A+T+(N)−, or A+T+(N)+). Of the 25 MCI patients, 8 (32%) displayed "Alzheimer's pathologic change", and 6 (24%) had "Alzheimer's disease". A total of 66 individuals had a mean follow-up of 2.1 years (SD = 0.9, min = 0.8, max = 3.9), and 15 of those individuals (22%) showed a clinical progression (defined as a worsening clinical classification, i.e., from CN to MCI or dementia or from MCI to dementia). Overall, participants with the "AD continuum" AT(N) biomarker profile (i.e., A+T−(N)−, A+T−(N)+, A+T+(N)−, and A+T+(N)+) were more likely to clinically progress (p = 0.04). Conclusions: A CSF "AD continuum" AT(N) biomarker profile is associated with an increased risk of future clinical decline in CN or MCI subjects.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Progressão da Doença , Humanos , Treonina , Proteínas tau
13.
J Cell Mol Med ; 25(7): 3216-3225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656806

RESUMO

Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.


Assuntos
Craniossinostoses/metabolismo , Canais de Cátion TRPP/metabolismo , Células Cultivadas , Criança , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Mecanotransdução Celular , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Canais de Cátion TRPP/genética
14.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668202

RESUMO

The role of certain viruses in malignant brain tumor development remains controversial. Experimental data demonstrate that human herpesviruses (HHVs), particularly cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpes virus 6 (HHV-6), are implicated in brain tumor pathology, although their direct role has not yet been proven. CMV is present in most gliomas and medulloblastomas and is known to facilitate oncomodulation and/or immunomodulation, thus promoting cancer cell proliferation, invasion, apoptosis, angiogenesis, and immunosuppression. EBV and HHV-6 have also been detected in brain tumors and high-grade gliomas, showing high rates of expression and an inflammatory potential. On the other hand, due to the neurotropic nature of HHVs, novel studies have highlighted the engagement of such viruses in the development of new immunotherapeutic approaches in the context of oncolytic viral treatment and vaccine-based strategies against brain tumors. This review provides a comprehensive evaluation of recent scientific data concerning the emerging dual role of HHVs in malignant brain pathology, either as potential causative agents or as immunotherapeutic tools in the fight against these devastating diseases.


Assuntos
Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/terapia , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/isolamento & purificação , Humanos , Imunoterapia , Terapia Viral Oncolítica
16.
J Cell Mol Med ; 23(9): 6215-6227, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251475

RESUMO

Polycystic Kidney Disease (PKD), which is attributable to mutations in the PKD1 and PKD2 genes encoding polycystin-1 (PC1) and polycystin-2 (PC2) respectively, shares common cellular defects with cancer, such as uncontrolled cell proliferation, abnormal differentiation and increased apoptosis. Interestingly, PC1 regulates many signalling pathways including Jak/STAT, mTOR, Wnt, AP-1 and calcineurin-NFAT which are also used by cancer cells for sending signals that will allow them to acquire and maintain malignant phenotypes. Nevertheless, the molecular relationship between polycystins and cancer is unknown. In this study, we investigated the role of PC1 in cancer biology using glioblastoma (GOS3), prostate (PC3), breast (MCF7), lung (A549) and colorectal (HT29) cancer cell lines. Our in vitro results propose that PC1 promotes cell migration in GOS3 cells and suppresses cell migration in A549 cells. In addition, PC1 enhances cell proliferation in GOS3 cells but inhibits it in MCF7, A549 and HT29 cells. We also found that PC1 up-regulates mTOR signalling and down-regulates Jak signalling in GOS3 cells, while it up-regulates mTOR signalling in PC3 and HT29 cells. Together, our study suggests that PC1 modulates cell proliferation and migration and interacts with mTOR and Jak signalling pathways in different cancer cell lines. Understanding the molecular details of how polycystins are associated with cancer may lead to the identification of new players in this devastating disease.


Assuntos
Neoplasias/genética , Doenças Renais Policísticas/genética , Serina-Treonina Quinases TOR/genética , Canais de Cátion TRPP/genética , Células A549 , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HT29 , Humanos , Janus Quinases/genética , Células MCF-7 , Neoplasias/classificação , Neoplasias/patologia , Doenças Renais Policísticas/patologia , Transdução de Sinais/genética
17.
J Cell Biochem ; 120(5): 6894-6898, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30461048

RESUMO

Distorted mechanotransduction represents the molecular hallmark of disease mechanobiology and is displayed with common features during the development of various pathophysiologies. Polycystins constitute a family of mechanosensitive proteins that facilitate pathogenic signal transduction mechanisms. The main representatives of the family are polycystin-1 (PC1) and polycystin-2 (PC2), which function as a mechano-induced membrane receptor and a calcium-permeable ion channel, respectively. PC1 and PC2 mediate extracellular mechanical stimulation, induce intracellular molecular signaling and evoke corresponding gene transcription. Recent reports reveal that polycystin-mediated signaling does not occur in polycystic kidney disease only, where it is most prominently studied. It is also present during the development of clinical entities such as endothelial dysfunction and atheromatosis, deregulation of osteoblast differentiation, cancer development, and psoriasis. In this study, we highlight emerging data that support the overall contribution of polycystins to disease mechanobiology and suggest further exploration of this protein family in diseases generated from force-bearing tissue structures.

18.
Radiology ; 291(2): 459-466, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912718

RESUMO

Background Previous work has demonstrated that drugs can be delivered across the blood-brain barrier by exposing circulating microbubbles to a sequence of long ultrasound pulses. Although this sequence has successfully delivered drugs to the brain, concerns remain regarding potentially harmful effects from disrupting the brain vasculature. Purpose To determine whether a low-energy, rapid, short-pulse ultrasound sequence can efficiently and safely deliver drugs to the murine brain. Materials and Methods Twenty-eight female wild-type mice underwent focused ultrasound treatment after injections of microbubbles and a labeled model drug, while three control mice were not treated (May-November 2017). The left hippocampus of 14 mice was exposed to low-energy short pulses (1 MHz; five cycles; peak negative pressure, 0.35 MPa) of ultrasound emitted at a rapid rate (1.25 kHz) in bursts (0.5 Hz), and another 14 mice were exposed to standard long pulses (10 msec, 0.5 Hz) containing 150 times more acoustic energy. Mice were humanely killed at 0 (n = 5), 10 (n = 3), or 20 minutes (n = 3) after ultrasound treatment. Hematoxylin-eosin (H-E) staining was performed on three mice. The delivered drug dose and distribution were quantified with the normalized optical density and coefficient of variation. Safety was assessed by H-E staining, the amount of albumin released, and the duration of permeability change in the blood-brain barrier. Statistical analysis was performed by using the Student t test. Results The rapid short-pulse sequence delivered drugs uniformly throughout the parenchyma. The acoustic energy emitted from the microbubbles also predicted the delivered dose (r = 0.97). Disruption in the blood-brain barrier lasted less than 10 minutes and 3.4-fold less albumin was released into the brain than with long pulses. No vascular or tissue damage from rapid short-pulse exposure was observable using H-E staining. Conclusion The rapid short-pulse ultrasound sequence is a minimally disruptive and efficient drug delivery method that could improve the treatment, diagnosis, and study of neurologic diseases. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Klibanov and McDannold in this issue.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Sonicação/métodos , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Corantes Fluorescentes/farmacocinética , Hipocampo/química , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Sonicação/instrumentação , Distribuição Tecidual
20.
Int J Mol Sci ; 20(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052533

RESUMO

Alterations in the process of mechanotransduction have been implicated in the pathogenesis of several diseases such as genetic diseases, osteoporosis, cardiovascular anomalies, and cancer. Several studies over the past twenty years have demonstrated that polycystins (polycystin-1, PC1; and polycystin-2, PC2) respond to changes of extracellular mechanical cues, and mediate pathogenic mechanotransduction and cyst formation in kidney cells. However, recent reports reveal the emergence of polycystins as key proteins that facilitate the transduction of mechano-induced signals in various clinical entities besides polycystic kidney disease, such as cancer, cardiovascular defects, bone loss, and deformations, as well as inflammatory processes like psoriasis. Herewith, we discuss data from recent studies that establish this role with potential clinical utility.


Assuntos
Reabsorção Óssea/patologia , Cardiomiopatias/patologia , Neoplasias/patologia , Psoríase/patologia , Canais de Cátion TRPP/metabolismo , Animais , Reabsorção Óssea/metabolismo , Cardiomiopatias/metabolismo , Humanos , Mecanotransdução Celular , Neoplasias/metabolismo , Psoríase/metabolismo , Canais de Cátion TRPP/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA