Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418278

RESUMO

Proteins are dynamic macromolecules that perform vital functions in cells. A protein structure determines its function, but this structure is not static, as proteins change their conformation to achieve various functions. Understanding the conformational landscapes of proteins is essential to understand their mechanism of action. Sets of carefully chosen conformations can summarize such complex landscapes and provide better insights into protein function than single conformations. We refer to these sets as representative conformational ensembles. Recent advances in computational methods have led to an increase in the number of available structural datasets spanning conformational landscapes. However, extracting representative conformational ensembles from such datasets is not an easy task and many methods have been developed to tackle it. Our new approach, EnGens (short for ensemble generation), collects these methods into a unified framework for generating and analyzing representative protein conformational ensembles. In this work, we: (1) provide an overview of existing methods and tools for representative protein structural ensemble generation and analysis; (2) unify existing approaches in an open-source Python package, and a portable Docker image, providing interactive visualizations within a Jupyter Notebook pipeline; (3) test our pipeline on a few canonical examples from the literature. Representative ensembles produced by EnGens can be used for many downstream tasks such as protein-ligand ensemble docking, Markov state modeling of protein dynamics and analysis of the effect of single-point mutations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química
2.
J Chem Inf Model ; 64(5): 1730-1750, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38415656

RESUMO

The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.


Assuntos
Hominidae , Peptídeos , Animais , Peptídeos/química , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Processamento de Proteína Pós-Traducional , Hominidae/metabolismo , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 117(48): 30610-30618, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184174

RESUMO

Peptide binding to major histocompatibility complexes (MHCs) is a central component of the immune system, and understanding the mechanism behind stable peptide-MHC binding will aid the development of immunotherapies. While MHC binding is mostly influenced by the identity of the so-called anchor positions of the peptide, secondary interactions from nonanchor positions are known to play a role in complex stability. However, current MHC-binding prediction methods lack an analysis of the major conformational states and might underestimate the impact of secondary interactions. In this work, we present an atomically detailed analysis of peptide-MHC binding that can reveal the contributions of any interaction toward stability. We propose a simulation framework that uses both umbrella sampling and adaptive sampling to generate a Markov state model (MSM) for a coronavirus-derived peptide (QFKDNVILL), bound to one of the most prevalent MHC receptors in humans (HLA-A24:02). While our model reaffirms the importance of the anchor positions of the peptide in establishing stable interactions, our model also reveals the underestimated importance of position 4 (p4), a nonanchor position. We confirmed our results by simulating the impact of specific peptide mutations and validated these predictions through competitive binding assays. By comparing the MSM of the wild-type system with those of the D4A and D4P mutations, our modeling reveals stark differences in unbinding pathways. The analysis presented here can be applied to any peptide-MHC complex of interest with a structural model as input, representing an important step toward comprehensive modeling of the MHC class I pathway.


Assuntos
Complexo Principal de Histocompatibilidade , Cadeias de Markov , Modelos Moleculares , Peptídeos/metabolismo , Alanina/genética , Ligação Competitiva , Simulação por Computador , Análise Mutacional de DNA , Mutação/genética , Prolina/metabolismo , Ligação Proteica
4.
Molecules ; 24(5)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832312

RESUMO

The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells. The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable and general binding prediction (i.e., testing whether a given peptide binds to a given MHC). However, structural analysis is limited in part by the difficulty in modelling pMHCs given the size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen (Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only minutes on a standard desktop to generate tens of bound conformations, and we show the ability of APE-Gen to sample conformations found in X-ray crystallography even when only sequence information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool. We demonstrate an example for studying cross-reactivity.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Complexos Multiproteicos/química , Peptídeos/química , Linfócitos T/química , Sítios de Ligação , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/imunologia , Modelos Moleculares , Complexos Multiproteicos/imunologia , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Linfócitos T/imunologia
5.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384411

RESUMO

Both experimental and computational methods are available to gather information about a protein's conformational space and interpret changes in protein structure. However, experimentally observing and computationally modeling large proteins remain critical challenges for structural biology. Our work aims at addressing these challenges by combining computational and experimental techniques relying on each other to overcome their respective limitations. Indeed, despite its advantages, an experimental technique such as hydrogen-exchange monitoring cannot produce structural models because of its low resolution. Additionally, the computational methods that can generate such models suffer from the curse of dimensionality when applied to large proteins. Adopting a common solution to this issue, we have recently proposed a framework in which our computational method for protein conformational sampling is biased by experimental hydrogen-exchange data. In this paper, we present our latest application of this computational framework: generating an atomic-resolution structural model for an unknown protein state. For that, starting from an available protein structure, we explore the conformational space of this protein, using hydrogen-exchange data on this unknown state as a guide. We have successfully used our computational framework to generate models for three proteins of increasing size, the biggest one undergoing large-scale conformational changes.


Assuntos
Complemento C3b/química , Medição da Troca de Deutério , Interleucina-8/química , Modelos Moleculares , Humanos , Conformação Proteica
6.
J Virol ; 89(16): 8304-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041301

RESUMO

UNLABELLED: T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8(+) T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8(+) T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8(+) T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8(+) T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8(+) T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. IMPORTANCE: Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses. Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8(+) T cells are abundant in HCV-seronegative individuals but that their repertoire is highly diverse due to the involvement of both naive precursors and cross-reactive memory cells of different specificities, which can influence the response to vaccines. The data may emphasize the need to personalize immune-based therapies based on the individual's T cell repertoire that is present before the immune intervention.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Vacinas Virais/imunologia , Estudos de Coortes , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38577265

RESUMO

The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.

8.
Nat Commun ; 15(1): 1821, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418901

RESUMO

Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Interferon gama/farmacologia , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Microambiente Tumoral
9.
Front Immunol ; 14: 1142573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377956

RESUMO

T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Conectina/química , Conectina/metabolismo , Linfócitos T , Peptídeos , Neoplasias/terapia , Neoplasias/metabolismo
10.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188892, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004960

RESUMO

Vestigial-like 1 (VGLL1) is a recently discovered driver of proliferation and invasion that is expressed in many aggressive human malignancies and is strongly associated with poor prognosis. The VGLL1 gene encodes for a co-transcriptional activator that shows intriguing structural similarity to key activators in the hippo pathway, providing important clues to its functional role. VGLL1 binds to TEAD transcription factors in an analogous fashion to YAP1 but appears to activate a distinct set of downstream gene targets. In mammals, VGLL1 expression is found almost exclusively in placental trophoblasts, cells that share many hallmarks of cancer. Due to its role as a driver of tumor progression, VGLL1 has become a target of interest for potential anticancer therapies. In this review, we discuss VGLL1 from an evolutionary perspective, contrast its role in placental and tumor development, summarize the current knowledge of how signaling pathways can modulate VGLL1 function, and discuss potential approaches for targeting VGLL1 therapeutically.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Animais , Feminino , Humanos , Gravidez , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Placenta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Domínio TEA , Neoplasias/genética , Mamíferos/metabolismo
11.
Front Immunol ; 14: 1108303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187737

RESUMO

Introduction: Peptide-HLA class I (pHLA) complexes on the surface of tumor cells can be targeted by cytotoxic T-cells to eliminate tumors, and this is one of the bases for T-cell-based immunotherapies. However, there exist cases where therapeutic T-cells directed towards tumor pHLA complexes may also recognize pHLAs from healthy normal cells. The process where the same T-cell clone recognizes more than one pHLA is referred to as T-cell cross-reactivity and this process is driven mainly by features that make pHLAs similar to each other. T-cell cross-reactivity prediction is critical for designing T-cell-based cancer immunotherapies that are both effective and safe. Methods: Here we present PepSim, a novel score to predict T-cell cross-reactivity based on the structural and biochemical similarity of pHLAs. Results and discussion: We show our method can accurately separate cross-reactive from non-crossreactive pHLAs in a diverse set of datasets including cancer, viral, and self-peptides. PepSim can be generalized to work on any dataset of class I peptide-HLAs and is freely available as a web server at pepsim.kavrakilab.org.


Assuntos
Peptídeos , Linfócitos T Citotóxicos , Sequência de Aminoácidos , Células Clonais
12.
Pathogens ; 12(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37242386

RESUMO

A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.

13.
Hum Immunol ; 84(8): 374-383, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36710086

RESUMO

We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with ß2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.


Assuntos
Antígenos HLA-G , Proteínas de Checkpoint Imunológico , Humanos , Antígenos HLA-G/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Proteínas de Checkpoint Imunológico/genética , Genes MHC Classe I , Isoformas de Proteínas/genética
14.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163076

RESUMO

Proteins are dynamic macromolecules that perform vital functions in cells. A protein structure determines its function, but this structure is not static, as proteins change their conformation to achieve various functions. Understanding the conformational landscapes of proteins is essential to understand their mechanism of action. Sets of carefully chosen conformations can summarize such complex landscapes and provide better insights into protein function than single conformations. We refer to these sets as representative conformational ensembles. Recent advances in computational methods have led to an increase in number of available structural datasets spanning conformational landscapes. However, extracting representative conformational ensembles from such datasets is not an easy task and many methods have been developed to tackle it. Our new approach, EnGens (short for ensemble generation), collects these methods into a unified framework for generating and analyzing protein conformational ensembles. In this work we: (1) provide an overview of existing methods and tools for protein structural ensemble generation and analysis; (2) unify existing approaches in an open-source Python package, and a portable Docker image, providing interactive visualizations within a Jupyter Notebook pipeline; (3) test our pipeline on a few canonical examples found in the literature. Representative ensembles produced by EnGens can be used for many downstream tasks such as protein-ligand ensemble docking, Markov state modeling of protein dynamics and analysis of the effect of single-point mutations.

15.
Clin Cancer Res ; 29(10): 1938-1951, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988276

RESUMO

PURPOSE: The aim of this study is to determine immune-related biomarkers to predict effective antitumor immunity in myelodysplastic syndrome (MDS) during immunotherapy (IMT, αCTLA-4, and/or αPD-1 antibodies) and/or hypomethylating agent (HMA). EXPERIMENTAL DESIGN: Peripheral blood samples from 55 patients with MDS were assessed for immune subsets, T-cell receptor (TCR) repertoire, mutations in 295 acute myeloid leukemia (AML)/MDS-related genes, and immune-related gene expression profiling before and after the first treatment. RESULTS: Clinical responders treated with IMT ± HMA but not HMA alone showed a significant expansion of central memory (CM) CD8+ T cells, diverse TCRß repertoire pretreatment with increased clonality and emergence of novel clones after the initial treatment, and a higher mutation burden pretreatment with subsequent reduction posttreatment. Autophagy, TGFß, and Th1 differentiation pathways were the most downregulated in nonresponders after treatment, while upregulated in responders. Finally, CTLA-4 but not PD-1 blockade attributed to favorable changes in immune landscape. CONCLUSIONS: Analysis of tumor-immune landscape in MDS during immunotherapy provides clinical response biomarkers.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Imunoterapia
16.
Cancer Immunol Res ; : OF1-OF18, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285177

RESUMO

Comprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) patients with AML. Cells coexpressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells. We identified two effector CD8+ T-cell subsets characterized by distinct cytokine and metabolic profiles that were differentially enriched in NewlyDx and RelRef patients. We refined a 25-gene CD8-derived signature correlating with therapy resistance, including genes associated with activation, chemoresistance, and terminal differentiation. Pseudotemporal trajectory analysis supported enrichment of a terminally differentiated state in CD8+ T cells with high CD8-derived signature expression at relapse or refractory disease. Higher expression of the 25-gene CD8 AML signature correlated with poorer outcomes in previously untreated patients with AML, suggesting that the bona fide state of CD8+ T cells and their degree of differentiation are clinically relevant. Immune clonotype tracking revealed more phenotypic transitions in CD8 clonotypes in NewlyDx than in RelRef patients. Furthermore, CD8+ T cells from RelRef patients had a higher degree of clonal hyperexpansion associated with terminal differentiation and higher CD8-derived signature expression. Clonotype-derived antigen prediction revealed that most previously unreported clonotypes were patient-specific, suggesting significant heterogeneity in AML immunogenicity. Thus, immunologic reconstitution in AML is likely to be most successful at earlier disease stages when CD8+ T cells are less differentiated and have greater capacity for clonotype transitions.

17.
Cancer Immunol Res ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163233

RESUMO

Comprehensive investigation of CD8+ T cells in acute myeloid leukemia (AML) is essential for developing immunotherapeutic strategies beyond immune checkpoint blockade. Herein, we performed single-cell RNA profiling of CD8+ T cells from 3 healthy bone marrow donors and 23 newly diagnosed (NewlyDx) and 8 relapsed/refractory (RelRef) AML patients. Cells co-expressing canonical exhaustion markers formed a cluster constituting <1% of all CD8+ T cells. We identified two effector CD8+ T cell subsets characterized by distinct cytokine and metabolic profiles that were differentially enriched in NewlyDx and RelRef patients. We refined a 25-gene CD8-derived signature correlating with therapy resistance, including genes associated with activation, chemoresistance, and terminal differentiation. Pseudotemporal trajectory analysis supported enrichment of a terminally differentiated state in CD8+ T cells with high CD8-derived signature expression at relapse or refractory disease. Higher expression of the 25-gene CD8 AML signature correlated with poorer outcomes in previously untreated AML patients, suggesting that the bona fide state of CD8+ T cells and their degree of differentiation are clinically relevant. Immune clonotype tracking revealed more phenotypic transitions in CD8 clonotypes in NewlyDx than in RelRef patients. Furthermore, CD8+ T cells from RelRef patients had a higher degree of clonal hyperexpansion associated with terminal differentiation and higher CD8-derived signature expression. Clonotype-derived antigen prediction revealed that most previously unreported clonotypes were patient-specific, suggesting significant heterogeneity in AML immunogenicity. Thus, immunologic reconstitution in AML is likely to be most successful at earlier disease stages when CD8+ T cells are less differentiated and have greater capacity for clonotype transitions.

18.
J Am Soc Mass Spectrom ; 33(2): 215-237, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077179

RESUMO

Data produced by hydrogen-exchange monitoring experiments have been used in structural studies of molecules for several decades. Despite uncertainties about the structural determinants of hydrogen exchange itself, such data have successfully helped guide the structural modeling of challenging molecular systems, such as membrane proteins or large macromolecular complexes. As hydrogen-exchange monitoring provides information on the dynamics of molecules in solution, it can complement other experimental techniques in so-called integrative modeling approaches. However, hydrogen-exchange data have often only been used to qualitatively assess molecular structures produced by computational modeling tools. In this paper, we look beyond qualitative approaches and survey the various paradigms under which hydrogen-exchange data have been used to quantitatively guide the computational modeling of molecular structures. Although numerous prediction models have been proposed to link molecular structure and hydrogen exchange, none of them has been widely accepted by the structural biology community. Here, we present as many hydrogen-exchange prediction models as we could find in the literature, with the aim of providing the first exhaustive list of its kind. From purely structure-based models to so-called fractional-population models or knowledge-based models, the field is quite vast. We aspire for this paper to become a resource for practitioners to gain a broader perspective on the field and guide research toward the definition of better prediction models. This will eventually improve synergies between hydrogen-exchange monitoring and molecular modeling.

19.
Sci Rep ; 12(1): 10749, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750701

RESUMO

Binding of peptides to Human Leukocyte Antigen (HLA) receptors is a prerequisite for triggering immune response. Estimating peptide-HLA (pHLA) binding is crucial for peptide vaccine target identification and epitope discovery pipelines. Computational methods for binding affinity prediction can accelerate these pipelines. Currently, most of those computational methods rely exclusively on sequence-based data, which leads to inherent limitations. Recent studies have shown that structure-based data can address some of these limitations. In this work we propose a novel machine learning (ML) structure-based protocol to predict binding affinity of peptides to HLA receptors. For that, we engineer the input features for ML models by decoupling energy contributions at different residue positions in peptides, which leads to our novel per-peptide-position protocol. Using Rosetta's ref2015 scoring function as a baseline we use this protocol to develop 3pHLA-score. Our per-peptide-position protocol outperforms the standard training protocol and leads to an increase from 0.82 to 0.99 of the area under the precision-recall curve. 3pHLA-score outperforms widely used scoring functions (AutoDock4, Vina, Dope, Vinardo, FoldX, GradDock) in a structural virtual screening task. Overall, this work brings structure-based methods one step closer to epitope discovery pipelines and could help advance the development of cancer and viral vaccines.


Assuntos
Antígenos de Histocompatibilidade Classe II , Peptídeos , Epitopos/química , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Peptídeos/química , Ligação Proteica
20.
Front Immunol ; 13: 931155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903104

RESUMO

The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease, has affected millions of people worldwide. There is constant search for new therapies to either prevent or mitigate the disease. Fortunately, we have observed the successful development of multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein. However, such focused approaches may contribute for the rise of new variants, fueled by the constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses in nature. Therefore, it is important to examine other proteins, preferentially those that are less susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N protein is less accessible to humoral response, peptides from its conserved regions can be presented by class I Human Leukocyte Antigen (HLA) molecules, eliciting an immune response mediated by T-cells. Given the increased number of protein sequences deposited in biological databases daily and the N protein conservation among viral strains, computational methods can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be used by practitioners of different levels of expertise for novel vaccine development. SARS-Arena combines sequence-based methods and structure-based analyses to (i) perform multiple sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook workflows that can help in the identification of new T-cell targets against SARS-CoV viruses. In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide (SPRWYFYYL) recognized by CD8+ T-cells in the context of HLA-B7+. SARS-Arena is available at https://github.com/KavrakiLab/SARS-Arena.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos de Linfócito T , Humanos , Peptídeos , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA