Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502090

RESUMO

This work describes a 3D-printed optofluidic fiber sensor to measure refractive index in real time, combining a microfluidic system with an optical fiber extrinsic Fabry-Perot interferometer. The microfluidic chip platform was developed for this purpose through 3D printing. The Fabry-Perot cavity was incorporated in the microfluidic chip perpendicularly to the sample flow, which was of approximately 3.7 µL/s. The optofluidic fiber sensor platform coupled with a low-cost optical power meter detector was characterized using different concentrations of glucose solutions. In the linear regression analysis, the optical power shift was correlated with the refractive index and a sensitivity of -86.6 dB/RIU (r2 = 0.996) was obtained. Good results were obtained in terms of stability with a maximum standard deviation of 0.03 dB and a sensor resolution of 5.2 × 10-4 RIU. The feasibility of the optofluidic fiber sensor for dynamic analyses of refractive index with low sample usage was confirmed through real-time measurements.


Assuntos
Fibras Ópticas , Refratometria , Desenho de Equipamento , Lasers , Microfluídica
2.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433466

RESUMO

The detection of bond-slip between the reinforcing bar (RB) and concrete is of great importance to ensure the safety of reinforced concrete (RC) structures. The techniques to monitor the connection between the RB and concrete are in constant development, with special focus on the ones with straightforward operation and simple non-intrusive implementation. In this work, a simple configuration is developed using 10 optical fiber sensors, allowing different sections of the same RC structure to be monitored. Since the RB may suffer different strains along its length, the location of the sensors is critical to provide an early warning about any displacement. Bragg gratings were inscribed in both silica and polymer optical fibers and these devices worked as displacement sensors by monitoring the strain variations on the fibers. The results showed that these sensors can be easily implemented in a civil construction environment, and due to the small dimensions, they can be a non-intrusive technique when multiple sensors are implemented in the same RC structure.

3.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616621

RESUMO

The use of simpler and less bulky equipment, with a reliable performance and at relative low cost is increasingly important when assembling sensing configurations for a wide variety of applications. Based on this concept, this paper proposes a simple, efficient and relative low-cost fiber Bragg grating (FBG) interrogation solution using ultra-short FBGs (USFBGs) as edge filters. USFBGs with different lengths and reflection bandwidths were produced in silica optical fiber and in poly(methyl methacrylate) (PMMA) microstructured polymer optical fiber (mPOF), and by adjusting specific inscription parameters and the diffraction pattern, these gratings can present self-apodization and unique spectral characteristics suitable for filtering operations. In addition to being a cost-effective edge filter solution, USFBGs and standard uniform FBGs in silica fiber have similar thermal sensitivities, which results in a straightforward operation without complex equipment or calculations. This FBG interrogation configuration is also quite promising for dynamic measurements, and due to its multiplexing capabilities multiple USFBGs can be inscribed in the same optical fiber, allowing to incorporate several filters with identical or different spectral characteristics at specific wavelength regions in the same fiber, thus showing great potential to create and develop new sensing configurations.

4.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015705

RESUMO

As corrosion has slow development, its detection at an early age could be an alternative for reducing costs of structural rehabilitation. Therefore, the employment of structural health monitoring (SHM) systems, sensing configurations collecting data over time allowing for observing changes in the properties of the materials and damage emergence, for monitoring corrosion can be a good strategy to measure the damage and to decide the better moment for intervention. Nonetheless, the current corrosion sensor technology and the high costs of the sensing system implementation are limiting this application in the field. In this work, an optical fiber Bragg grating (FBG)-based sensing system is proposed for monitoring the thickness loss of a 1020 carbon steel metal plate subjected to controlled corrosion. The natural frequency of the plate was collected as a function of the corrosion time over 3744 h. To validate the experimental results, ultrasound measures and electrochemical tests were also carried out under similar conditions. The experimental results show adequate reliability, indicating the suitable functionality of the proposed system for monitoring the thickness loss caused by corrosion in metallic structures, in comparison with traditional methods, as ultrasonic and electrochemical measures.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Corrosão , Tecnologia de Fibra Óptica/métodos , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 21(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833811

RESUMO

Developing technologies capable of constantly assessing and optimizing day-to-day activities has been a research priority for several years. A key factor in such technologies is the use of highly sensitive sensors to monitor in real-time numerous parameters, such as temperature and load. Due to their unique features, optical fiber sensors became one of the most interesting and viable solutions for applications dependent on those parameters. In this work, we present an optical fiber load sensor, called load cell, based on Fabry-Pérot hollow cavities embedded in a polymeric material. By using the load cells in a parallel configuration with a non-embedded hollow cavity, the optical Vernier effect was generated, allowing maximum sensitivity values of 0.433 nm N-1 and 0.66 nm °C-1 to be attained for vertical load and temperature, respectively. The proposed sensor's performance, allied with the proposed configuration, makes it a viable and suitable device for a wide range of applications, namely those requiring high thermal and load sensitivities.


Assuntos
Tecnologia de Fibra Óptica , Refratometria , Desenho de Equipamento , Fibras Ópticas , Temperatura
6.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502717

RESUMO

Optical fiber sensors based on fiber Bragg gratings (FBGs) are prone to measurement errors if the cross-sensitivity between temperature and strain is not properly considered. This paper describes a self-compensated technique for canceling the undesired influence of temperature in strain measurement. An edge-filter-based interrogator is proposed and the central peaks of two FBGs (sensor and reference) are matched with the positive and negative slopes of a Fabry-Perot interferometer that acts as an optical filter. A tuning process performed by the grey wolf optimizer (GWO) algorithm is required to determine the optimal spectral characteristics of each FBG. The interrogation range is not compromised by the proposed technique, being determined by the spectral characteristics of the optical filter in accordance with the traditional edge-filtering interrogation. Simulations show that, by employing FBGs with optimal characteristics, temperature variations of 30 °C led to an average relative error of 3.4% for strain measurements up to 700µÏµ. The proposed technique was experimentally tested under non-ideal conditions: two FBGs with spectral characteristics different from the optimized results were used. The temperature sensibility decreased by 50.8% as compared to a temperature uncompensated interrogation system based on an edge filter. The non-ideal experimental conditions were simulated and the maximum error between theoretical and experimental data was 5.79%, proving that the results from simulation and experimentation are compatible.

7.
Opt Lett ; 45(18): 5057-5060, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932452

RESUMO

This Letter presents the development of a low-cost polymer optical fiber (POF) sensor for mechanical wave monitoring. The POF is fabricated using the light polymerization spinning process (LPS-POF) with Bisphenol-A as its main component, resulting in a highly flexible fiber. The proposed LPS-POF sensor is applied on the assessment of squared waves with different amplitudes, where the amplitude and dynamic responses are compared to the ones of a piezoelectric transducer (PZT). In static conditions, a determination coefficient (R2) of 0.990 is obtained between the reference (PZT) and proposed sensors for the amplitude assessment of the wave. In dynamic analysis, the LPS-POF viscoelasticity is compensated using viscoelastic constitutive models, resulting in a R2 of 0.988 between the sensor responses, which indicate a mean error reduction of 21% when compared to the uncompensated responses in the amplitudes of different square waves. The dynamic analysis also shows the sensor capability of operating in frequencies as high as 25 Hz. Then, the sensor's responses, compared to the input squared wave, show the possibility of wave velocity measurement. Therefore, with a LPS-POF sensor array, it is possible to monitor these parameters in practical applications.

8.
Sensors (Basel) ; 20(9)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370219

RESUMO

Optical backscatter reflectometry (OBR) is a method for the interrogation of Rayleigh scattering occurring in each section of an optical fiber, resulting in a single-fiber-distributed sensor with sub-millimeter spatial resolution. The use of high-scattering fibers, doped with MgO-based nanoparticles in the core section, provides a scattering increase which can overcome 40 dB. Using a configuration-labeled Scattering-Level Multiplexing (SLMux), we can arrange a network of high-scattering fibers to perform a simultaneous scan of multiple fiber sections, therefore extending the OBR method from a single fiber to multiple fibers. In this work, we analyze the performance and boundary limits of SLMux, drawing the limits of detection of N-channel SLMux, and evaluating the performance of scattering-enhancement methods in optical fibers.

9.
Opt Express ; 27(26): 38039-38048, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878576

RESUMO

We present the first Bragg gratings fabricated in two, three and five rings undoped PMMA microstructured polymer optical fibres (mPOFs) with relative low cost 266 nm Nd:YAG laser in the 850 nm region. The fibers were connectorised with commercial ferrules for easy coupling with silica patch cables. Temperature, humidity and strain sensitivities are measured and also the impact of ring structure and the diameter of POF on the characterization measurements are studied for potential applications. We also analyzed the effect of the number of hexagonal rings structure in gratings fabrication, noticing that larger number of rings lead to more difficulties to obtain strong gratings, where we consider this performance due to the scattering effects. We demonstrate Bragg gratings fabrication in 5-rings structure mPOF after 6 min by using 266 nm Nd:YAG laser whereas no Bragg gratings have been fabricated so far using 325 nm He-Cd laser system. Up to 30 dB relative reflected power gratings are obtained in two rings mPOF, showing good time stability and promising results for undoped mPOF applications.

10.
Opt Lett ; 44(19): 4833-4836, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568454

RESUMO

In this Letter, we report on a simple, but highly sensitive sensor based on two intrinsic Fabry-Perot interferometers (FPIs) inscribed in a standard single-mode optical fiber. A brief theoretical study on the Vernier effect is presented, in which a simulation of the sensitivity magnification factor dependence on the FPI's length is performed. Based on the simulation results, the FPIs were fabricated using a custom micromachining setup that integrates a near-infrared femtosecond laser and a motorized XYZ platform. Using the Vernier effect, sensitivities of 145 pm/µÎµ and 927 pm/°C were obtained for strain and temperature, respectively. The sensor's performance combined with its versatile and customizable configuration allows real-time and in situ strain and temperature monitoring under harsh environments.

11.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905982

RESUMO

In this work, a fiber Bragg grating (FBG) based sensing system for wheelchair pressure ulcer prevention was developed. Six FBGs were strategically positioned in a wheelchair to monitor the more prominent bone areas, namely scapulas (right (SR) and left (SL)), ischiatic zone (right (IR) and left (IL)), and heels (right (HR) and left (HL)). The sensing architecture was tested by a female user during pressure relief exercises, to verify its effectiveness on pressure monitoring. The proposed system proves to be a compact and reliable solution for wheelchair pressure ulcer prevention, making it a suitable alternative to existing conventional electronic sensors, with the advantage of being immune to electromagnetic interferences and usable in humid environments. In addition to the pressure, the breathing rate was also monitored. By combining the proposed sensing architecture with a wheelchair user detection software, it is possible to create alerts for the user to know when a new position should be adopted, in order to relieve the pressure in a specific area, thus avoiding one of the biggest problems for such patients, pressure ulcers.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica , Úlcera por Pressão/prevenção & controle , Cadeiras de Rodas/efeitos adversos , Calibragem , Exercício Físico , Humanos , Pressão , Temperatura
12.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683718

RESUMO

Fabry-Perot interferometric (FPI) sensors are an accurate and well-established sensing technology that are used to monitor a wide range of parameters such as strain, temperature, and refractive index, among many others. Nevertheless, due to the limited number and high cost of existing interrogation techniques for FPIs, its use is often restricted to discrete measurements, not being so explored for dynamic applications. The development of an alternative interrogation technique for a high rate of acquisition may propel this type of sensor into less explored fields such as dynamic biomedical applications. In this work, we present the theoretical and experimental analyses of an FPI sensing architecture by using an alternative high rate dynamic acquisition methodology, based on frequency to amplitude conversion, where the FPI spectral shift is detuned by the convolution of the optical light source with the FPI interference pattern. The good agreement between the theoretical and experimental results verified the reliability of the proposed methodology. Moreover, preliminary results show that the developed sensing architecture can be a suitable solution to monitor biomedical parameters such as the carotid pulse wave.


Assuntos
Tecnologia Biomédica/instrumentação , Interferometria/instrumentação , Monitorização Fisiológica/instrumentação , Algoritmos , Materiais Biocompatíveis/química , Simulação por Computador , Humanos , Ácido Láctico/química , Fibras Ópticas , Impressão Tridimensional , Pulso Arterial
13.
Sensors (Basel) ; 19(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284380

RESUMO

In this paper, we report the development of a portable energy-efficient interrogator (Perrogator) for wavelength-based optical sensors. The interrogator is based on a compact solution encompassing a white light source and the spectral convolution between the sensor and a tunable filter, which is acquired by a photodetector, where a microcontroller has two functions: (i) To control the filter tuning and to (ii) acquire the photodetector signal. Then, the data is sent to a single-board computer for further signal processing. Furthermore, the employed single-board computer has a Wi-Fi module, which can be used to send the sensors data to the cloud. The proposed approach resulted in an interrogator with a resolution as high as 3.82 pm (for 15.64 nm sweeping range) and maximum acquisition frequency of about 210 Hz (with lower resolution ~15.30 pm). Perrogator was compared with a commercial fiber Bragg grating (FBG) interrogator for strain measurements and good agreement between both devices was found (1.226 pm/µÎµ for the commercial interrogator and 1.201 pm/µÎµ for the proposed approach with root mean square error of 0.0144 and 0.0153, respectively), where the Perrogator has the additional advantages of lower cost, higher portability and lower energy consumption. In order to demonstrate such advantages in conjunction with the high acquisition frequency allowed us to demonstrate two wearable applications using the proposed interrogation device over FBG and Fabry-Perot interferometer (FPI) sensors. In the first application, an FBG-embedded smart textile for knee angle assessment was used to analyze the gait of a healthy person. Due to the capability of reconstructing the FBG spectra, it was possible to employ a technique based on the FBG wavelength shift and reflectivity to decouple the effects of the bending angle and axial strain on the FBG response. The measurement of the knee angle as well as the estimation of the angular and axial displacements on the grating that can be correlated to the variations of the knee center of rotation were performed. In the second application, a FPI was embedded in a chest band for simultaneous measurement of breath and heart rates, where good agreement (error below 5%) was found with the reference sensors in all analyzed cases.


Assuntos
Marcha/fisiologia , Determinação da Frequência Cardíaca/instrumentação , Articulação do Joelho/fisiologia , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Frequência Cardíaca/fisiologia , Determinação da Frequência Cardíaca/métodos , Humanos , Interferometria/instrumentação , Respiração , Tecnologia sem Fio/instrumentação
14.
Opt Express ; 26(14): 18096-18104, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114089

RESUMO

We experimentally demonstrate the first polymer optical fiber Bragg gratings inscribed with only one Nd:YAG laser (266 nm) pulse. The gratings have been inscribed in a single-mode poly (methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One laser pulse with a duration of 8 ns and energy of 72 µJ is adequate to introduce a refractive index change of 0.5 × 10-4 in the fiber core. The stability of the gratings has been confirmed and the strain and temperature sensitivity measurements demonstrate their tunable properties.

15.
Opt Express ; 26(26): 34655-34664, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650886

RESUMO

We obtained chirped gratings by performing hot water gradient thermal annealing of uniform poly (methylmethacrylate) (PMMA) microstructured polymer optical fiber Bragg gratings (POFBGs). The proposed method's simplicity is one of its main advantages because no special phase mask or additional etching are needed. It not only enables easy control tuning of the central wavelength and chirp characteristics, but it also leads to obtain flexible grating response, compared with tapered chirped POFBGs. Therefore, a flexible and low-cost chirped POFBG devices fabrication technique has been presented by using a single uniform phase mask.

16.
Opt Express ; 26(10): 12939-12947, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801327

RESUMO

This paper presents the characterization of polymer optical fibers (POFs) submitted to the catastrophic fuse effect towards intensity-variation-based sensing of strain, transverse force, temperature, and moisture. In the experiments, POFs with and without the fuse effect are tested and the results are compared with respect to the sensitivity, linearity, and root mean squared error (RMSE). The fused POFs have higher linearity and lower RMSE than non-fused POFs in strain and transverse force sensing. Also, the sensitivity of the fused POFs is higher in transverse force and temperature sensing, which can be related to the higher sensitivity to the curvature that the transverse force creates on the POF and to the more significant variations of the refractive index with temperature increase. Additionally, the fused POFs present lower moisture absorption than the non-fused POFs. The presented results indicate a great potential of the fused POFs intensity-variation-based sensing applications of various physical parameters.

17.
Opt Lett ; 43(20): 5106-5109, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320831

RESUMO

We demonstrate a largely tunable dispersion fiber Bragg grating (FBG) inscribed in a microstructured polymer optical fiber (mPOF). The bandwidth of the chirped FBG (CFBG) was achieved from 0.11 to 4.86 nm, which corresponds to a tunable dispersion range from 513.6 to 11.15 ps/nm. Furthermore, thermal sensitivity is used to compensate for the wavelength shift due to the applied strain. These results demonstrate that a CFBG in a POF is a promising technology for future optical systems.

18.
Opt Lett ; 43(19): 4799-4802, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272743

RESUMO

We present results for the mechanical characterization of a bisphenol-A acrylate-based polymer optical fiber (POF) manufactured using a novel light polymerization spinning (LPS) process. The particular manufacturing process allows the development of POFs having unique mechanical characteristics, which result from an exceptionally low Young's modulus. The lower Young's modulus enables optical sensors for measuring stress or pressure with improved sensitivity and potentially a higher tunable mechanical range than conventional POFs. Moreover, properties such as the storage modulus variations with respect to the temperature and humidity were studied. Fiber Bragg gratings (FBGs), were inscribed in the POF using the plane-by-plane femtosecond laser, direct-write method for selective FBG mode excitation, and were characterized for changes to temperature, pressure, and relative humidity. The response of FBGs in this LPS-POF for all the three aforementioned measurands was several times higher than that measured for conventional POFs.

19.
Opt Lett ; 43(11): 2539-2542, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856424

RESUMO

This Letter demonstrates the application of polymer optical fibers (POFs) damaged by the fiber fuse effect to curvature sensing and dynamic angular monitoring. The curvature sensing performance using the fused-POF is compared to POF without the fuse effect. Both POFs are submitted to angles of up to 90 deg in flexion/extension cycles with angular velocities ranging from 0.48 rad/s to 5.61 rad/s. The fused POF is found to show higher performance with respect to sensitivity, correlation coefficient with linear regression, and hysteresis. For instance, at the angular velocity of 0.48 rad/s, the fused POF shows >3 times higher sensitivity and significantly lower hysteresis than those of the non-fused POF. In addition, the fused POFs have lower cross-sensitivity and hysteresis variations on the tests with different angular velocities. These results indicate that the fused POFs are potential candidates to develop curvature sensors with various advantages over non-fused POFs, for applications such as gait analysis and wearable robotics.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Fibras Ópticas , Polímeros , Desenho de Equipamento
20.
Opt Lett ; 43(8): 1754-1757, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652357

RESUMO

This Letter presents, for the first time, to the best of our knowledge, the dynamic mechanical analysis of a polymer optical fiber (POF) that was previously damaged by the catastrophic fuse effect. The variation of the fiber Young's modulus was evaluated with respect to the increase of temperature, humidity, and frequency of strain cycles. The obtained data for the fused POF are compared with the ones for the same POF without the fuse effect. The results show the feasibility of the fused POF for sensor applications, such as strain and acceleration measurement, since it presents temperature sensitivity almost two times lower in temperatures between 26°C and 90°C and Young's modulus 2.3 times lower than those obtained with the bare fiber. The Young's modulus variation with the humidity is 1.5 MPa/%RH in a humidity range of 66-96%. In addition, the fused POF presented a variation of its dynamic modulus with the frequency increase four times lower than non-fused POFs on the range of 0.01-100.00 Hz. These results pave the way for future applications of fused POFs as sensing elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA