RESUMO
Transformations of the low-energy vibrational spectra are associated with structural changes in an analyte and closely related to the instability of weak chemical bounds. Terahertz (THz)/far-infrared optical spectroscopy is commonly used to probe such transformation, aimed at characterization of the underlying solid-phase chemical reactions in organic compounds. However, such studies usually provide quite qualitative information about the temperature- and time-dependent parameters of absorption peaks in dielectric spectra of an analyte. In this paper, an approach for quantitative analyses of the solid-phased chemical reactions based on the THz pulsed spectroscopy was developed. It involves studying an evolution of the sample optical properties, as a function of the analyte temperature and reaction time, and relies on the classical oscillator model, the sum rule, and the Arrhenius theory. The method allows one to determine the temperature-dependent reaction rate V1(T) and activation energy Ea. To demonstrate the practical utility of this method, it was applied to study α-lactose monohydrate during its temperature-induced molecular decomposition. Analysis of the measured THz spectra revealed the increase of the reaction rate in the range of V1 ≃ ~9 × 10-4-10-2 min-1, when the analyte temperature rises from 313 to 393 K, while the Arrhenius activation energy is Ea ≃ ~45.4 kJ/mol. Thanks to a large number of obtained physical and chemical parameters, the developed approach expands capabilities of THz spectroscopy in chemical physics, analytical chemistry, and pharmaceutical industry.
RESUMO
Recently, the low-temperature phase of water molecules confined within nanocages formed by the crystalline lattice of water-containing cordierite crystals has been reported to comprise domains with ferroelectrically ordered dipoles within the a, b-planes which are antiferroelectrically alternating along the c-axis. In the present work, comprehensive broad-band dielectric spectroscopy is combined with specific heat studies and molecular dynamics and Monte Carlo simulations in order to investigate in more detail the collective modes and single-particle excitations of nanoconfined water molecules. From DFT-MD simulations we reconstruct the potential-energy landscape experienced by the H2O molecules. A rich set of anisotropic temperature-dependent excitations is observed in the terahertz frequency range. Their origin is associated with the complex rotational/translational vibrations of confined H2O molecules. A strongly temperature dependent relaxational excitation, observed at radio-microwave frequencies for the electric field parallel to the crystallographic a-axis, E||a is analyzed in detail. The temperature dependences of loss-peak frequency and dielectric strength of the excitation together with specific heat data confirm a ferroelectric order-disorder phase transition at T0 ≈ 3 K in the network of H2O dipoles. Additional dielectric data are also provided for polarization E||b, too. Overall, these combined experimental investigations enable detailed conclusions concerning the dynamics of the confined water molecules that develop within their microscopic energy landscapes.
RESUMO
Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.
RESUMO
In this paper, terahertz (THz) pulsed spectroscopy and solid immersion microscopy were applied to study interactions between water vapor and tissue scaffolds-the decellularized bovine pericardium (DBP) collagen matrices, in intact form, cross-linked with the glutaraldehyde or treated by plasma. The water-absorbing properties of biomaterials are prognostic for future cell-mediated reactions of the recipient tissue with the scaffold. Complex dielectric permittivity of DBPs was measured in the 0.4-2.0 THz frequency range, while the samples were first dehydrated and then exposed to water vapor atmosphere with 80.0 ± 5.0% relative humidity. These THz dielectric measurements of DBPs and the results of their weighting allowed to estimate the adsorption time constants, an increase of tissue mass, as well as dispersion of these parameters. During the adsorption process, changes in the DBPs' dielectric permittivity feature an exponential character, with the typical time constant of =8-10 min, the transient process saturation at =30 min, and the tissue mass improvement by =1-3%. No statistically-relevant differences between the measured properties of the intact and treated DBPs were observed. Then, contact angles of wettability were measured for the considered DBPs using a recumbent drop method, while the observed results showed that treatments of DBP somewhat affects their surface energies, polarity, and hydrophilicity. Thus, our studies revealed that glutaraldehyde and plasma treatment overall impact the DBP-water interactions, but the resultant effects appear to be quite complex and comparable to the natural variability of the tissue properties. Such a variability was attributed to the natural heterogeneity of tissues, which was confirmed by the THz microscopy data. Our findings are important for further optimization of the scaffolds' preparation and treatment technologies. They pave the way for THz technology use as a non-invasive diagnosis tool in tissue engineering and regenerative medicine.
RESUMO
Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.
RESUMO
To test probable effect of the magnetic field (MF) on the dynamic structure of globular proteins the action of strong MF on proteolysis rate of methemoglobin and serum albumin with trypsin was studied. It has been found that the MF up to 10 T does not affect the proteolysis rate of these proteins and does not effect that of serum albumin with immobilized trypsin. This makes impossible consideration of the effect on the dynamic structure of globular proteins as a mechanism of the MF action on biological systems.