Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
3 Biotech ; 10(2): 78, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099729

RESUMO

Currently, there is a need of non-computationally-intensive bioinformatics tools to cope with the increase of large datasets produced by Next Generation Sequencing technologies. We present a simple and robust bioinformatics pipeline to search for novel enzymes in metagenomic sequences. The strategy is based on pattern searching using as reference conserved motifs coded as regular expressions. As a case study, we applied this scheme to search for novel proteases S8A in a publicly available metagenome. Briefly, (1) the metagenome was assembled and translated into amino acids; (2) patterns were matched using regular expressions; (3) retrieved sequences were annotated; and (4) diversity analyses were conducted. Following this pipeline, we were able to identify nine sequences containing an S8 catalytic triad, starting from a metagenome containing 9,921,136 Illumina reads. Identity of these nine sequences was confirmed by BLASTp against databases at NCBI and MEROPS. Identities ranged from 62 to 89% to their respective nearest ortholog, which belonged to phyla Proteobacteria, Actinobacteria, Planctomycetes, Bacterioidetes, and Cyanobacteria, consistent with the most abundant phyla reported for this metagenome. All these results support the idea that they all are novel S8 sequences and strongly suggest that our methodology is robust and suitable to detect novel enzymes.

2.
Genes (Basel) ; 9(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370083

RESUMO

A lipolytic screening with fungal strains isolated from lignocellulosic waste collected in banana plantation dumps was carried out. A Trichoderma harzianum strain (B13-1) showed good extracellular lipolytic activity (205 UmL-1). Subsequently, functional screening of the lipolytic activity on Rhodamine B enriched with olive oil as the only carbon source was performed. The successful growth of the strain allows us to suggest that a true lipase is responsible for the lipolytic activity in the B13-1 strain. In order to identify the gene(s) encoding the protein responsible for the lipolytic activity, in silico identification and characterization of triacylglycerol lipases from T. harzianum is reported for the first time. A survey in the genome of this fungus retrieved 50 lipases; however, bioinformatic analyses and putative functional descriptions in different databases allowed us to choose seven lipases as candidates. Suitability of the bioinformatic screening to select the candidates was confirmed by reverse transcription polymerase chain reaction (RT-PCR). The gene codifying 526309 was expressed when the fungus grew in a medium with olive oil as carbon source. This protein shares homology with commercial lipases, making it a candidate for further applications. The success in identifying a lipase gene inducible with olive oil and the suitability of the functional screening and bioinformatic survey carried out herein, support the premise that the strategy can be used in other microorganisms with sequenced genomes to search for true lipases, or other enzymes belonging to large protein families.

3.
Gene ; 593(1): 154-161, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27522038

RESUMO

Metagenomics is a culture-independent technology that allows access to novel and potentially useful genetic resources from a wide range of unknown microorganisms. In this study, a fosmid metagenomic library of tropical underground water was constructed, and clones were functionally screened for extracellular proteolytic activity. One of the positive clones, containing a 41,614-bp insert, had two genes with 60% and 68% identity respectively with a peptidase S8 of Chitinimonas koreensis. When these genes were individually sub-cloned, in both cases their sub-clones showed proteolytic phenotype, confirming that they both encode functional proteases. These genes -named PrAY5 and PrAY6- are next to each other. They are similar in size (1845bp and 1824bp respectively) and share 66.5% identity. An extensive in silico characterization showed that their ORFs encode complex zymogens having a signal peptide at their 5' end, followed by a pro-peptide, a catalytic region, and a PPC domain at their 3' end. Their translated sequences were classified as peptidases S8A by sequence comparisons against the non-redundant database and corroborated by Pfam and MEROPS. Phylogenetic analysis of the catalytic region showed that they encode novel proteases that clustered with the sub-family S8_13, which according to the CDD database at NCBI, is an uncharacterized subfamily. They clustered in a clade different from the other three proteases S8 found so far by functional metagenomics, and also different from proteases S8 found in sequenced environmental samples, thereby expanding the range of potentially useful proteases that have been identified by metagenomics. I-TASSER modeling corroborated that they may be subtilases, thus possibly they participate in the hydrolysis of proteins with broad specificity for peptide bonds, and have a preference for a large uncharged residue in P1.


Assuntos
Biblioteca Gênica , Metagenoma , Fases de Leitura Aberta , Peptídeo Hidrolases , Microbiologia da Água , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA