Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biol Chem ; 300(3): 105774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382672

RESUMO

Gum arabic (GA) is widely used as an emulsion stabilizer and edible coating and consists of a complex carbohydrate moiety with a rhamnosyl-glucuronate group capping the non-reducing ends. Enzymes that can specifically cleave the glycosidic chains of GA and modify their properties are valuable for structural analysis and industrial application. Cryogenic X-ray crystal structure of GA-specific L-rhamnose-α-1,4-D-glucuronate lyase from Fusarium oxysporum (FoRham1), belonging to the polysaccharide lyase (PL) family 42, has been previously reported. To determine the specific reaction mechanism based on its hydrogen-containing enzyme structure, we performed joint X-ray/neutron crystallography of FoRham1. Large crystals were grown in the presence of L-rhamnose (a reaction product), and neutron and X-ray diffraction datasets were collected at room temperature at 1.80 and 1.25 Å resolutions, respectively. The active site contained L-rhamnose and acetate, the latter being a partial analog of glucuronate. Incomplete H/D exchange between Arg166 and acetate suggested that a strong salt-bridge interaction was maintained. Doubly deuterated His105 and deuterated Tyr150 supported the interaction between Arg166 and the acetate. The unique hydrogen-rich environment functions as a charge neutralizer for glucuronate and stabilizes the oxyanion intermediate. The NE2 atom of His85 was deprotonated and formed a hydrogen bond with the deuterated O1 hydroxy of L-rhamnose, indicating the function of His85 as the base/acid catalyst for bond cleavage via ß-elimination. Asp83 functions as a pivot between the two catalytic histidine residues by bridging them. This His-His-Asp structural motif is conserved in the PL 24, 25, and 42 families.


Assuntos
Fusarium , Polissacarídeo-Liases , Humanos , Acetatos , Cristalografia por Raios X , Ácido Glucurônico/química , Hidrogênio , Liases , Polissacarídeo-Liases/química , Ramnose/química , Fusarium/enzimologia
2.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029967

RESUMO

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase , Pseudomonas , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Sítios de Ligação , Flavoproteínas/genética , Flavoproteínas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Xylophilus/enzimologia
3.
J Biol Chem ; 297(3): 101001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303708

RESUMO

Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the ß-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid -bound FoRham1 were determined, and the active site was identified on the anterior side of the ß-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.


Assuntos
Ácido Glucurônico/metabolismo , Goma Arábica/metabolismo , Polissacarídeo-Liases/metabolismo , Ramnose/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Fusarium/enzimologia , Filogenia , Polissacarídeo-Liases/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Biol Chem ; 297(5): 101324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688653

RESUMO

Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on ß-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of ß-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2':2,1'-ß-D-Frup (diheterolevulosan II) and ß-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2':2,1'-ß-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with ß-D-Fruf and ß-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/química , Modelos Moleculares , Oligossacarídeos/química , Cristalografia por Raios X , Glicosídeo Hidrolases/classificação
5.
Glycobiology ; 32(2): 171-180, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34735571

RESUMO

ß-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-ß-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, ß-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the ß-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.


Assuntos
Cisteína , Zinco , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Glicosídeo Hidrolases/química , Especificidade por Substrato
6.
Nature ; 526(7573): 397-401, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26416735

RESUMO

The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a 'gated-pore' transport mechanism in such monosaccharide transporters.


Assuntos
Frutose/metabolismo , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Bovinos , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Frutose/química , Glucose/química , Glucose/metabolismo , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 5/genética , Modelos Moleculares , Mutação Puntual/genética , Conformação Proteica , Ratos , Sais/química , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Simportadores/química , Simportadores/metabolismo
7.
Angew Chem Int Ed Engl ; 60(11): 5754-5758, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528085

RESUMO

The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3 (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived ß-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This ß-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.


Assuntos
Cicloexanóis/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/metabolismo , Glicosídeo Hidrolases/metabolismo , Biocatálise , Cristalografia por Raios X , Cicloexanóis/química , Cicloexanóis/farmacologia , Cisteína/química , Teoria da Densidade Funcional , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Simulação de Dinâmica Molecular , Estrutura Molecular
8.
J Biol Chem ; 294(45): 17143-17154, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548313

RESUMO

N-Linked glycans play important roles in various cellular and immunological events. Endo-ß-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.


Assuntos
Acetilglucosaminidase/química , Acetilglucosaminidase/metabolismo , Cordyceps/enzimologia , Fucose/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Glicosilação , Modelos Moleculares , Especificidade por Substrato
9.
Biochemistry ; 58(45): 4543-4558, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639299

RESUMO

p-Hydroxybenzoate hydroxylase (PHBH) is a flavoprotein monooxygenase that catalyzes the hydroxylation of p-hydroxybenzoate (p-OHB) to 3,4-dihydroxybenzoate (3,4-DOHB). PHBH can bind to other benzoate derivatives in addition to p-OHB; however, hydroxylation does not occur on 3,4-DOHB. Replacement of Tyr385 with Phe forms a mutant, which enables the production of 3,4,5-trihydroxybenzonate (gallic acid) from 3,4-DOHB, although the catalytic activity of the mutant is quite low. In this study, we report how the L199V/Y385F double mutant exhibits activity for producing gallic acid 4.3-fold higher than that of the Y385F single mutant. This improvement in catalytic activity is primarily due to the suppression of a shunt reaction that wastes reduced nicotinamide adenine dinucleotide phosphate by producing H2O2. To further elucidate the molecular mechanism underlying this higher catalytic activity, we performed molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, in addition to determining the crystal structure of the Y385F·3,4-DOHB complex. The simulations showed that the Y385F mutation facilitates the deprotonation of the 4-hydroxy group of 3,4-DOHB, which is necessary for initiating hydroxylation. Moreover, the L199V mutation in addition to the Y385F mutation allows the OH moiety in the peroxide group of C-(4a)-flavin hydroperoxide to come into the proximity of the C5 atom of 3,4-DOHB. Overall, this study provides a consistent explanation for the change in the catalytic activity of PHBH caused by mutations, which will enable us to better design an enzyme with different activities.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Gálico/metabolismo , Pseudomonas aeruginosa/metabolismo , 4-Hidroxibenzoato-3-Mono-Oxigenase/química , 4-Hidroxibenzoato-3-Mono-Oxigenase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Hidroxilação , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Termodinâmica
10.
J Biol Chem ; 293(43): 16874-16888, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30181215

RESUMO

Cyclic α-maltosyl-(1→6)-maltose (CMM, cyclo-{→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→})is a cyclic glucotetrasaccharide with alternating α-1,4 and α-1,6 linkages. CMM is composed of two maltose units and is one of the smallest cyclic glucooligosaccharides. Although CMM is resistant to usual amylases, it is efficiently hydrolyzed by CMM hydrolase (CMMase), belonging to subfamily 20 of glycoside hydrolase family 13 (GH13_20). Here, we determined the ligand-free crystal structure of CMMase from the soil-associated bacterium Arthrobacter globiformis and its structures in complex with maltose, panose, and CMM to elucidate the structural basis of substrate recognition by CMMase. The structures disclosed that although the monomer structure consists of three domains commonly adopted by GH13 and other α-amylase-related enzymes, CMMase forms a unique wing-like dimer structure. The complex structure with CMM revealed four specific subsites, namely -3', -2, -1, and +1'. We also observed that the bound CMM molecule adopts a low-energy conformer compared with the X-ray structure of a single CMM crystal, also determined here. Comparison of the CMMase active site with those in other enzymes of the GH13_20 family revealed that three regions forming the wall of the cleft, denoted PYF (Pro-203/Tyr-204/Phe-205), CS (Cys-163/Ser-164), and Y (Tyr-168), are present only in CMMase and are involved in CMM recognition. Combinations of multiple substitutions in these regions markedly decreased the activity toward CMM, indicating that the specificity for this cyclic tetrasaccharide is supported by the entire shape of the pocket. In summary, our work uncovers the mechanistic basis for the highly specific interactions of CMMase with its substrate CMM.


Assuntos
Arthrobacter/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Compostos Macrocíclicos/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Compostos Macrocíclicos/química , Modelos Moleculares , Oligossacarídeos/química , Conformação Proteica , Homologia de Sequência
11.
J Biol Chem ; 293(45): 17375-17386, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224354

RESUMO

Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.


Assuntos
Actinobacteria/enzimologia , Glucose/análogos & derivados , NAD/química , Desidrogenase do Álcool de Açúcar/química , Actinobacteria/genética , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Glucose/metabolismo , Ligação de Hidrogênio , NAD/metabolismo , Oxirredução , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
12.
J Biol Chem ; 293(23): 8812-8828, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678880

RESUMO

ß-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several ß-1,2-glucan-associated enzymes have been characterized, little is known about how ß-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial ß-1,2-glucan metabolism and promote the discovery of unidentified ß-1,2-glucan-associated proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Listeria/metabolismo , Polissacarídeos Bacterianos/metabolismo , beta-Glucanas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Listeria/química , Simulação de Dinâmica Molecular , Polissacarídeos Bacterianos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , beta-Glucanas/química
13.
J Biol Chem ; 292(51): 21092-21101, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29061847

RESUMO

Enzymes of the glycoside hydrolase family 42 (GH42) are widespread in bacteria of the human gut microbiome and play fundamental roles in the decomposition of both milk and plant oligosaccharides. All GH42 enzymes characterized so far have ß-galactosidase activity. Here, we report the existence of a GH42 subfamily that is exclusively specific for α-l-arabinopyranoside and describe the first representative of this subfamily. We found that this enzyme (BlArap42B) from a probiotic Bifidobacterium species cannot hydrolyze ß-galactosides. However, BlArap42B effectively hydrolyzed paeonolide and ginsenoside Rb2, plant glycosides containing an aromatic aglycone conjugated to α-l-arabinopyranosyl-(1,6)-ß-d-glucopyranoside. Paeonolide, a natural glycoside from the roots of the plant genus Paeonia, is not hydrolyzed by classical GH42 ß-galactosidases. X-ray crystallography revealed a unique Trp345-X12-Trp358 sequence motif at the BlArap42B active site, as compared with a Phe-X12-His motif in classical GH42 ß-galactosidases. This analysis also indicated that the C6 position of galactose is blocked by the aromatic side chains, hence allowing accommodation only of Arap lacking this carbon. Automated docking of paeonolide revealed that it can fit into the BlArap42B active site. The Glcp moiety of paeonolide stacks onto the aromatic ring of the Trp252 at subsite +1 and C4-OH is hydrogen bonded with Asp249 Moreover, the aglycone stacks against Phe421 from the neighboring monomer in the BlArap42B trimer, forming a proposed subsite +2. These results further support the notion that evolution of metabolic specialization can be tracked at the structural level in key enzymes facilitating degradation of specific glycans in an ecological niche.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium animalis/enzimologia , Dissacarídeos/metabolismo , Microbioma Gastrointestinal , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium animalis/isolamento & purificação , Configuração de Carboidratos , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Dissacarídeos/química , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeos/química , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Filogenia , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
14.
J Biol Chem ; 292(18): 7487-7506, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28270506

RESUMO

ß-1,2-Glucan is an extracellular cyclic or linear polysaccharide from Gram-negative bacteria, with important roles in infection and symbiosis. Despite ß-1,2-glucan's importance in bacterial persistence and pathogenesis, only a few reports exist on enzymes acting on both cyclic and linear ß-1,2-glucan. To this end, we purified an endo-ß-1,2-glucanase to homogeneity from cell extracts of the environmental species Chitinophaga arvensicola, and an endo-ß-1,2-glucanase candidate gene (Cpin_6279) was cloned from the related species Chitinophaga pinensis The Cpin_6279 protein specifically hydrolyzed linear ß-1,2-glucan with polymerization degrees of ≥5 and a cyclic counterpart, indicating that Cpin_6279 is an endo-ß-1,2-glucananase. Stereochemical analysis demonstrated that the Cpin_6279-catalyzed reaction proceeds via an inverting mechanism. Cpin_6279 exhibited no significant sequence similarity with known glycoside hydrolases (GHs), and thus the enzyme defines a novel GH family, GH144. The crystal structures of the ligand-free and complex forms of Cpin_6279 with glucose (Glc) and sophorotriose (Glc-ß-1,2-Glc-ß-1,2-Glc) determined up to 1.7 Å revealed that it has a large cavity appropriate for polysaccharide degradation and adopts an (α/α)6-fold slightly similar to that of GH family 15 and 8 enzymes. Mutational analysis indicated that some of the highly conserved acidic residues in the active site are important for catalysis, and the Cpin_6279 active-site architecture provided insights into the substrate recognition by the enzyme. The biochemical characterization and crystal structure of this novel GH may enable discovery of other ß-1,2-glucanases and represent a critical advance toward elucidating structure-function relationships of GH enzymes.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Celulase/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Domínio Catalítico , Celulase/isolamento & purificação , Cristalografia por Raios X
15.
J Biol Chem ; 292(29): 12126-12138, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28546425

RESUMO

The α-N-acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O-glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca2+, is involved in the recognition of the GalNAc N-acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α-N-acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes.


Assuntos
Acetilgalactosamina/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/enzimologia , Coenzimas/metabolismo , Glicosídeo Hidrolases/metabolismo , Metais/metabolismo , alfa-N-Acetilgalactosaminidase/metabolismo , Acetilgalactosamina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Ligantes , Metais/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Probióticos , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , alfa-N-Acetilgalactosaminidase/antagonistas & inibidores , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética
16.
Nature ; 482(7384): 237-40, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286059

RESUMO

G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active ß(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Agonismo Inverso de Drogas , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/imunologia , Animais , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Ligantes , Camundongos , Modelos Moleculares , Opsinas/imunologia , Pichia , Conformação Proteica/efeitos dos fármacos , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/imunologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química
17.
J Biol Chem ; 290(30): 18281-92, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26041776

RESUMO

The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.


Assuntos
Celobiose/química , Dissacarídeos/química , Gammaproteobacteria/enzimologia , Fosforilases/química , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Celobiose/metabolismo , Celulose/química , Celulose/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , Dissacarídeos/metabolismo , Gammaproteobacteria/química , Oxirredução , Fosforilases/genética , Fosforilases/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1854(5): 333-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644306

RESUMO

Infant gut-associated bifidobacteria possess a metabolic pathway to utilize lacto-N-biose (Gal-ß1,3-GlcNAc) and galacto-N-biose (Gal-ß1,3-GalNAc) from human milk and glycoconjugates specifically. In this pathway, N-acetylhexosamine 1-kinase (NahK) catalyzes the phosphorylation of GlcNAc or GalNAc at the anomeric C1 position with ATP. Crystal structures of NahK have only been determined in the closed state. In this study, we determined open state structures of NahK in three different forms (apo, ADP complex, and ATP complex). A comparison of the open and closed state structures revealed an induced fit structural change defined by two rigid domains. ATP binds to the small N-terminal domain, and binding of the N-acetylhexosamine substrate to the large C-terminal domain induces a closing conformational change with a rotation angle of 16°. In the nucleotide binding site, two magnesium ions bridging the α-γ and ß-γ phosphates were identified. A mutational analysis indicated that a residue coordinating both of the two magnesium ions (Asp228) is essential for catalysis. The involvement of two magnesium ions in the catalytic machinery is structurally similar to the catalytic structures of protein kinases and aminoglycoside phosphotransferases, but distinct from the structures of other anomeric kinases or sugar 6-kinases. These findings help to elucidate the possible evolutionary adaptation of substrate specificities and induced fit mechanism.


Assuntos
Bifidobacterium/enzimologia , Magnésio/metabolismo , Fosfotransferases/química , Fosfotransferases/metabolismo , Dobramento de Proteína , Acetilglucosamina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Hexosaminas/metabolismo , Humanos , Íons , Ligantes , Magnésio/química , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
19.
Appl Microbiol Biotechnol ; 99(7): 3081-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25341403

RESUMO

Diclofenac is a nonsteroidal anti-inflammatory drug. It undergoes hydroxylation by mammalian cytochrome P450 enzymes at 4'- and/or 5'-positions. A bacterial P450 enzyme, CYP105D7 from Streptomyces avermitilis, has been shown to catalyze hydroxylation of 1-deoxypentalenic acid and an isoflavone daidzein. Here, we demonstrated that CYP105D7 also catalyzes hydroxylation of diclofenac at the C4'-position. A spectroscopic analysis showed that CYP105D7 binds diclofenac in a slightly cooperative manner with an affinity of 65 µM and a Hill coefficient of 1.16. The crystal structure of CYP105D7 in complex with diclofenac was determined at 2.2 Å resolution. The distal pocket of CYP105D7 contains two diclofenac molecules, illustrating drug recognition with a double-ligand-binding mode. The C3' and C4' atoms of the dichlorophenyl ring of one diclofenac molecule are positioned near the heme iron, suggesting that it is positioned appropriately for aromatic hydroxylation to yield the 4'-hydroxylated product. However, recognition of diclofenac by CYP105D7 was completely different from that of rabbit CYP2C5, which binds one diclofenac molecule with a cluster of water molecules. The distal pocket of CYP105D7 contains four arginine residues, forming a wall of the substrate-binding pocket, and the arginine residues are conserved in bacterial P450s in the CYP105 family.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Arginina , Sítios de Ligação , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Diclofenaco/química , Hidroxilação , Modelos Moleculares , Conformação Proteica , Streptomyces/enzimologia
20.
Proteins ; 82(10): 2857-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066066

RESUMO

Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three-dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/ß-hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the "CS-D-HC motif," is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site.


Assuntos
Aspergillus oryzae/enzimologia , Hidrolases de Éster Carboxílico/química , Cistina/química , Proteínas Fúngicas/química , Modelos Moleculares , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Sequência Conservada , Bases de Dados de Proteínas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA