Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 72: 40-50, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25472688

RESUMO

Endocrine disruption and high occurrences of intersex have been observed in wild fish associated with municipal wastewater treatment plant (WWTP) effluents in urbanized reaches of rivers around the globe. These reproductive effects have often been attributed to the presence of estrogen receptor agonists in effluents. However, recent studies have isolated a number of androgen receptor antagonists (antiandrogens) that may also contribute to the endocrine disruption observed at sites that are influenced by WWTP outfalls. This study aimed to characterize the spatial and temporal distribution of antiandrogenic personal care products (triclosan, chlorophene, dichlorophene, oxybenzone, 1-naphthol, and 2-naphthol), along with a herbicide (atrazine) and representative pharmaceuticals (carbamazepine, ibuprofen, naproxen, and venlafaxine) in the Grand River watershed in southern Ontario. Surface water sampling of 30 sites associated with six municipal WWTP outfalls was conducted during a summer low flow. Monthly samples were also collected immediately upstream and downstream of a major WWTP from August to November 2012. Atrazine was consistently found in all surface water sampling locations. Many of the target pharmaceuticals and triclosan were detected in WWTP effluents, especially those that did not nitrify. Under low flow conditions, the concentrations of triclosan and several pharmaceuticals increased directly downstream of the WWTPs then decreased rapidly with distance downstream. Chlorophene was either found at trace levels or below detection limits in the effluents while dichlorophene, oxybenzone, 1-naphthol, and 2-naphthol were not detected in any samples. Chlorophene was detected in surface water during the low flow summer period and once during the monthly sampling from August to November. However, the primary source of chlorophene did not appear to be associated with WWTP effluent. This study documents the spatial and temporal occurrence of several antiandrogens and pharmaceuticals in a highly impacted Canadian watershed. It supports previous observations that there is a diversity of contaminants in wastewater effluents and other sources that have the potential to alter endocrine function in wild fish.


Assuntos
Antagonistas de Androgênios/análise , Preparações Farmacêuticas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Amônia/análise , Condutividade Elétrica , Geografia , Nitratos/análise , Ontário , Reologia , Rios/química , Eliminação de Resíduos Líquidos , Purificação da Água
2.
Sci Total Environ ; 485-486: 193-204, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24727037

RESUMO

Municipal wastewater treatment plants (WWTPs) dispose of numerous trace organic contaminants in the receiving waters that can impact biological function in aquatic organisms. However, the complex nature of WWTP effluent mixtures and a wide variety of potential mechanisms that can alter physiological and reproductive development of aquatic organisms make it difficult to assess the linkages and severity of the effects associated with trace organic contaminants. This paper describes a surface water quality modeling exercise that was performed to understand the relevant contaminant fate and transport processes necessary to accurately predict the concentrations of trace organic compounds present in the aquatic environment. The target compounds modeled include a known antiandrogenic personal care product (triclosan) and selected pharmaceuticals (venlafaxine, naproxen, and carbamazepine). The WASP 7.5 model was adapted and calibrated to reflect approximately ten kilometers of reach of the Grand River watershed that is highly influenced by a major urban WWTP. Simulation of the fate and transport of the target compounds revealed that flow-driven transport processes (advection and dispersion) greatly influenced the behavior of the target contaminants in the aquatic environment. However, fate mechanisms such as photolysis and biodegradation can play an important role in the attenuation of some compounds. The exception was carbamazepine where it was shown to act as a conservative tracer compound for wastewater specific contaminants in the water phase. The calibrated water quality model can now be employed in a number of future applications. Prediction of fate and transport of other trace organic contaminants across the watershed and assessment of the performance of WWTP infrastructure upgrades in the removal of these compounds are just a few examples.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Canadá , Modelos Químicos , Rios/química , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA