RESUMO
Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.
Assuntos
Núcleo Caudado , Córtex Pré-Frontal Dorsolateral , Hipocampo , Locos de Características Quantitativas , Esquizofrenia , Caracteres Sexuais , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Feminino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Córtex Pré-Frontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilação da Expressão Gênica , Fatores Sexuais , Cromossomos Humanos X/genética , Córtex Pré-Frontal/metabolismoRESUMO
OBJECTIVE: Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS: VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS: Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS: The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.
RESUMO
(1) Background: Current dietary recommendations for dialysis patients suggest that high phosphorus diets may be associated with adverse outcomes such as hyperphosphatemia and death. However, there has been concern that excess dietary phosphorus restriction may occur at the expense of adequate dietary protein intake in this population. We hypothesized that higher dietary phosphorus intake is associated with higher mortality risk among a diverse cohort of hemodialysis patients. (2) Methods: Among 415 patients from the multi-center prospective Malnutrition, Diet, and Racial Disparities in Kidney Disease Study, we examined the associations of absolute dietary phosphorus intake (mg/day), ascertained by food frequency questionnaires, with all-cause mortality using multivariable Cox models. In the secondary analyses, we also examined the relationship between dietary phosphorus scaled to 1000 kcal of energy intake (mg/kcal) and dietary phosphorus-to-protein ratio (mg/g) with survival. (3) Results: In expanded case-mix + laboratory + nutrition adjusted analyses, the lowest tertile of dietary phosphorus intake was associated with higher mortality risk (ref: highest tertile): adjusted HR (aHR) (95% CI) 3.33 (1.75-6.33). In the analyses of dietary phosphorus scaled to 1000 kcal of energy intake, the lowest tertile of intake was associated with higher mortality risk compared to the highest tertile: aHR (95% CI) 1.74 (1.08, 2.80). Similarly, in analyses examining the association between dietary phosphorus-to-protein ratio, the lowest tertile of intake was associated with higher mortality risk compared to the highest tertile: aHR (95% CI) 1.67 (1.02-2.74). (4) Conclusions: A lower intake of dietary phosphorus was associated with higher mortality risk in a prospective hemodialysis cohort. Further studies are needed to clarify the relationship between specific sources of dietary phosphorus intake and mortality in this population.
Assuntos
Fósforo na Dieta , Diálise Renal , Estudos de Coortes , Proteínas Alimentares , Humanos , Fósforo , Fósforo na Dieta/efeitos adversos , Estudos Prospectivos , Diálise Renal/efeitos adversosRESUMO
X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due, in part, to a partial loss of TAF1 function. A disease-specific SINE-VNTR-Alu (SVA) retrotransposon insertion occurs within intron 32 of TAF1, a subunit of TFIID involved in transcription initiation. While all XDP males are usually clinically affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight iPSC lines from three XDP female carrier individuals for X chromosome inactivation status and identified clonal lines that express either the wild-type X or XDP haplotype. Furthermore, we characterized XDP-relevant transcript expression in neurotypical humans, and found that SVA-F expression decreases after 30 years of age in the brain and that TAF1 is decreased in most female samples. Uniquely in the caudate nucleus, TAF1 expression is not sexually dimorphic and decreased after adolescence. These findings indicate that regional-, age- and sex-specific mechanisms regulate TAF1, highlighting the importance of disease-relevant models and postmortem tissue. We propose that the decreased TAF1 expression in the adult caudate may synergize with the XDP-specific partial loss of TAF1 function in patients, thereby passing a minimum threshold of TAF1 function, and triggering degeneration in the neostriatum.Significance StatementXDP is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due to a partial loss of TAF1 function. While all XDP males are usually affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight stem cell lines from XDP female carrier individuals. Furthermore, we found that, uniquely in the caudate nucleus, TAF1 expression decreases after adolescence in healthy humans. We hypothesize that the decrease of TAF1 after adolescence in human caudate, in general, may underlie the vulnerability of the adult neostriatum in XDP.
RESUMO
Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform. We found that antipsychotic medication has an extensive influence on caudate gene expression. We constructed caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. These analyses provide a resource for the study of schizophrenia and insights into risk mechanisms and potential therapeutic targets.