Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 197: 107666, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001304

RESUMO

Trade-offs in resource-use efficiency (including water-, nitrogen-, and light-use efficiency, i.e., WUE, NUE, and LUE) are an important acclimation strategy of plants to environmental stresses. C4 photosynthesis, featured by a CO2 concentrating mechanism, is believed to be more efficient in using resources compared to C3 photosynthesis. However, response of photosynthetic resource-use efficiency trade-offs in C4 plants to vapour pressure deficit (VPD) and N supply has rarely been studied. Here, we studied the photosynthetic acclimation of Cleistogenes squarrosa, a perennial C4 grass, to controlled growth conditions with high or low VPD and N supply. High VPD increased WUE by 12% and decreased NUE by 16%, the ratio of net photosynthetic rate (A) to electron transport rate (J) (A/J) by 7% and the apparent quantum yield by 6%. High N supply tended to reduce NUE and increased maximum phosphoenol pyruvate carboxylation rate by 71% and slightly increased WUE. Stomatal conductance showed acclimation to VPD according to the Ball-Berry model, while a balanced cost of carboxylation and transpiration capacity was found across VPD and N treatments based on the least-cost model. WUE correlated negatively with NUE and LUE indicating that there was a trade-off between them, which is likely associated with acclimations in stomatal conductance and CO2 concentrating mechanisms.


Assuntos
Dióxido de Carbono , Nitrogênio , Pressão de Vapor , Fotossíntese , Poaceae/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
2.
Plants (Basel) ; 9(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899596

RESUMO

Contamination of soil and water with metals and metalloids is one of the most serious problems worldwide due to a lack of a healthy diet and food scarcity. Moreover, the cultivation of oilseed crops such as rapeseed (Brassica napus L.) with tannery wastewater could contain a large amount of toxic heavy metals [e.g., chromium (Cr)], which ultimately reduce its yield and directly influence oilseed quality. To overcome Cr toxicity in B. napus, a pot experiment was conducted to enhance plant growth and biomass by using newly introduced role of micronutrient-amino chelates [Zinc-lysine (Zn-lys)], which was irrigated with different levels [0% (control), 33%, 66%, and 100%] of tannery wastewater. According to the results of present findings, very high content of Cr in the wastewater directly affected plant growth and composition as well as gas exchange parameters, while boosting up the production of reactive oxygen species (ROS) and induced oxidative damage in the roots and leaves of B. napus. However, activities of antioxidants initially increased (33% of wastewater), but further addition of tannery wastewater in the soil caused a decrease in antioxidant enzymes, which also manifested by Zn content, while the conscious addition of wastewater significantly increased Cr content in the roots and shoots of B. napus. To reduce Cr toxicity in B. napus plants, exogenous supplementation of Zn-lys (10 mg/L) plays an effective role in increasing morpho-physiological attributes of B. napus and also reduces the oxidative stress in the roots and leaves of the oilseed crop (B. napus). Enhancement in different growth attributes was directly linked with increased in antioxidative enzymes while decreased uptake and accumulation of Cr content in B. napus when cultivated in wastewater with the application of Zn-lys. Zn-lys, therefore, plays a protective role in reducing the Cr toxicity of B. napus through an increase in plant growth and lowering of Cr uptake in various plant organs. However, further studies at field levels are required to explore the mechanisms of Zn-lys mediated reduction of Cr and possibly other heavy metal toxicity in plants.

3.
Biomolecules ; 10(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353010

RESUMO

The impact of heavy metal, i.e., cadmium (Cd), on the growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, and antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, organic acids exudation, and ultra-structure of membranous bounded organelles of two rice (Oryza sativa L.) genotypes (Shan 63 and Lu 9803) were investigated with and without the exogenous application of ferrous sulfate (FeSO4). Two O. sativa genotypes were grown under different levels of CdCl2 [0 (no Cd), 50 and 100 µM] and then treated with exogenously supplemented ferrous sulfate (FeSO4) [0 (no Fe), 50 and 100 µM] for 21 days. The results revealed that Cd stress significantly (p < 0.05) affected plant growth and biomass, photosynthetic pigments, gas exchange characteristics, affected antioxidant machinery, sugar contents, and ions uptake/accumulation, and destroy the ultra-structure of many membranous bounded organelles. The findings also showed that Cd toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) initiation, and electrolyte leakage (%), which was also manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidant compounds (phenolics, flavonoids, ascorbic acid, and anthocyanin) and organic acids exudation pattern in both O. sativa genotypes. At the same time, the results also elucidated that the O. sativa genotypes Lu 9803 are more tolerant to Cd stress than Shan 63. Although, results also illustrated that the exogenous application of ferrous sulfate (FeSO4) also decreased Cd toxicity in both O. sativa genotypes by increasing antioxidant capacity and thus improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decrease oxidative stress in the roots and shoots of O. sativa genotypes. Here, we conclude that the exogenous supplementation of FeSO4 under short-term exposure of Cd stress significantly improved plant growth and biomass, photosynthetic pigments, gas exchange characteristics, regulate antioxidant defense system, and essential nutrients uptake and maintained the ultra-structure of membranous bounded organelles in O. sativa genotypes.


Assuntos
Cádmio/química , Compostos Ferrosos/química , Oryza/efeitos dos fármacos , Oryza/genética , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Biomassa , Catalase/metabolismo , Genótipo , Malondialdeído , Estresse Oxidativo , Fotossíntese , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Especificidade da Espécie
4.
J Hazard Mater ; 360: 604-614, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30149347

RESUMO

Menadione sodium bisulphite (MSB) mediates plant defense responses under abiotic stresses. In present experiment, Cd stress (1 mM) resulted in significant reduction in growth, relative water contents, chlorophyll and uptake of essential nutrients in two okra cultivars (Shabnum and Arka Anamika). Cd-induced reduction in these variables was more in cv. Arka Anamika compared with cv. Shabnum 786. Cd caused oxidative damage in the form of higher cellular levels of MDA and H2O2. MSB applications (0, 50, 100, 150 and 200 µM) had differential effect on growth and key physio-biochemical attributes. Higher MSB dose (200 µM) was lethal as it further aggravated damages under Cd toxicity. However, plants treated with 100 µM MSB exhibited lesser oxidative damage due to better oxidative defense in the form of stimulated activities of antioxidant enzymes (SOD, POD, CAT and APX) and increased concentration of non-enzymatic antioxidants (phenolics, flavonoids and ascorbic acid). Moreover, 100 µM MSB mitigated Cd effect on the uptake of Ca, K, and Mg. MSB also reduced the uptake and transport of Cd to aerial parts of plants. The results of present study revealed MSB-induced slight oxidative burst that induced the accumulation of reactive oxygen species (ROS) scavenging defense proteins under Cd stress.


Assuntos
Abelmoschus/efeitos dos fármacos , Vitamina K 3/farmacologia , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Metais/metabolismo , Estresse Oxidativo , Metabolismo Secundário/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA