Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37775302

RESUMO

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Assuntos
Células Ciliadas Vestibulares , Vestíbulo do Labirinto , Animais , Cobaias , Potenciais de Ação/fisiologia , Células Ciliadas Vestibulares/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Mamíferos
2.
Langmuir ; 40(8): 4361-4372, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38357828

RESUMO

Obtaining an enriched and phenotypically pure cell population from heterogeneous cell mixtures is important for diagnostics and biosensing. Existing techniques such as fluorescent-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require preincubation with antibodies (Ab) and specialized equipment. Cell immunopanning removes the need for preincubation and can be done with no specialized equipment. The majority of the available antibody-mediated analyte capture techniques require a modification to the Abs for binding. In this work, no antibody modification is used because we take advantage of the carbohydrate chain in the Fc region of Ab. We use boronic acid as a cross-linker to bind the Ab to a modified surface. The process allows for functional orientation and cleavable binding of the Ab. In this study, we created an immunoaffinity matrix on polystyrene (PS), an inexpensive and ubiquitous plastic. We observed a 37% increase in Ab binding compared with that of a passive adsorption approach. The method also displayed a more consistent antibody binding with 17 times less variation in Ab loading among replicates than did the passive adsorption approach. Surface topography analysis revealed that a dextran coating reduced nonspecific antibody binding. Elemental analysis (XPS) was used to characterize the surface at different stages and showed that APBA molecules can bind upside-down on the surface. While upside-down antibodies likely remain functional, their elution behavior might differ from those bound in the desired way. Cell capture experiments show that the new surface has 43% better selectivity and 2.4-fold higher capture efficiency compared to a control surface of passively adsorbed Abs. This specific surface chemistry modification will allow the targeted capture of cells or analytes with the option of chemical detachment for further research and characterization.


Assuntos
Ácidos Borônicos , Poliestirenos , Poliestirenos/química , Ácidos Borônicos/química , Anticorpos/química
3.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257424

RESUMO

Drowning poses a significant threat, resulting in unexpected injuries and fatalities. To promote water sports activities, it is crucial to develop surveillance systems that enhance safety around pools and waterways. This paper presents an overview of recent advancements in drowning detection, with a specific focus on image processing and sensor-based methods. Furthermore, the potential of artificial intelligence (AI), machine learning algorithms (MLAs), and robotics technology in this field is explored. The review examines the technological challenges, benefits, and drawbacks associated with these approaches. The findings reveal that image processing and sensor-based technologies are the most effective approaches for drowning detection systems. However, the image-processing approach requires substantial resources and sophisticated MLAs, making it costly and complex to implement. Conversely, sensor-based approaches offer practical, cost-effective, and widely applicable solutions for drowning detection. These approaches involve data transmission from the swimmer's condition to the processing unit through sensing technology, utilising both wired and wireless communication channels. This paper explores the recent developments in drowning detection systems while considering costs, complexity, and practicality in selecting and implementing such systems. The assessment of various technological approaches contributes to ongoing efforts aimed at improving water safety and reducing the risks associated with drowning incidents.


Assuntos
Afogamento , Humanos , Afogamento/diagnóstico , Água , Inteligência Artificial , Algoritmos , Tecnologia
4.
Environ Res ; 238(Pt 1): 116972, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648189

RESUMO

Meniere's disease (MD) is a severe inner ear condition known by debilitating symptoms, including spontaneous vertigo, fluctuating and progressive hearing loss, tinnitus, and aural fullness or pressure within the affected ear. Prosper Meniere first described the origins of MD in the 1860s, but its underlying mechanisms remain largely elusive today. Nevertheless, researchers have identified a key histopathological feature called Endolymphatic Hydrops (ELH), which refers to the excessive buildup of endolymph fluid in the membranous labyrinth of the inner ear. The exact root of ELH is not fully understood. Still, it is believed to involve several biological and bioenvironmental etiological factors such as genetics, autoimmunity, infection, trauma, allergy, and new theories, such as saccular otoconia blocking the endolymphatic duct and sac. Regarding treatment, there are no reliable and definitive cures for MD. Most therapies focus on managing symptoms and improving the overall quality of patients' life. To make significant advancements in addressing MD, it is crucial to gain a fundamental understanding of the disease process, laying the groundwork for more effective therapeutic approaches. This paper provides a comprehensive review of the pathophysiology of MD with a focus on old and recent theories. Current treatment strategies and future translational approaches (with low-level evidence but promising results) related to MD are also discussed, including patents, drug delivery, and nanotechnology, that may provide future benefits to patients suffering from MD.


Assuntos
Hidropisia Endolinfática , Doença de Meniere , Humanos , Doença de Meniere/diagnóstico , Doença de Meniere/terapia , Hidropisia Endolinfática/diagnóstico , Hidropisia Endolinfática/etiologia , Membrana dos Otólitos
5.
Environ Res ; 231(Pt 2): 116133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209981

RESUMO

Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.


Assuntos
Metais Pesados , Nanoestruturas , Purificação da Água , Tecnologia , Purificação da Água/métodos , Substâncias Perigosas
6.
Nanomedicine ; 46: 102599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064032

RESUMO

Meniere's disease (MD) is a progressive inner ear disorder involving recurrent and prolonged episodes or attacks of vertigo with associated symptoms, resulting in a significantly reduced quality of life for sufferers. In most cases, MD starts in one ear; however, in one-third of patients, the disorder progresses to the other ear. Unfortunately, the etiology of the disease is unknown, making the development of effective treatments difficult. Nanomaterials, including nanoparticles (NPs) and nanocarriers, offer an array of novel diagnostic and therapeutic applications related to MD. NPs have specific features such as biocompatibility, biochemical stability, targetability, and enhanced visualization using imaging tools. This paper provides a comprehensive and critical review of recent advancements in nanotechnology-based diagnostic and therapeutic approaches for MD. Furthermore, the crucial challenges adversely affecting the use of nanoparticles to treat middle ear disorders are investigated. Finally, this paper provides recommendations and future directions for improving the performances of nanomaterials on theragnostic applications of MD.


Assuntos
Doença de Meniere , Humanos , Doença de Meniere/diagnóstico , Doença de Meniere/terapia , Doença de Meniere/complicações , Qualidade de Vida , Vertigem/complicações , Nanotecnologia
7.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161813

RESUMO

Drowning is considered amongst the top 10 causes of unintentional death, according to the World Health Organization (WHO). Therefore, anti-drowning systems that can save lives by preventing and detecting drowning are much needed. This paper proposes a robust and waterproof sensor-based device to detect distress in swimmers at varying depths and different types of water environments. The proposed device comprises four main components, including heart rate, blood oxygen level, movement, and depth sensors. Although these sensors were designed to work together to boost the system's capability as an anti-drowning device, each could operate independently. The sensors were able to determine the heart rate to an accuracy of 1 beat per minute (BPM), 1% SpO2, the acceleration with adjustable sensitivities of ±2 g, ±4 g, ±8 g, and ±16 g, and the depth up to 12.8 m. The data obtained from the sensors were sent to a microcontroller that compared the input data to adjustable threshold values to detect dangerous situations. Being in hazardous situations for more than a specific time activated the alarming system. Based on the comparison made in the program and measuring the time of submersion, a message indicating drowning or safe was sent to a lifeguard to continuously monitor the swimmer' condition via Wi-Fi to an IP address reachable by a mobile phone or laptop. It is also possible to continuously monitor the sensor outputs on the device's display or the connected mobile phone or laptop. The threshold values could be adjusted based on biometric parameters such as swimming conditions (swimming pool, beach, depth, etc.) and swimmers health and conditions. The functionality of the proposed device was thoroughly tested over a wide range of parameters and under different conditions, both in air and underwater. It was demonstrated that the device could detect a range of potentially hazardous aquatic situations. This work will pave the way for developing an effective drowning sensing system that could save tens of thousands of lives across the globe every year.


Assuntos
Telefone Celular , Afogamento , Piscinas , Humanos , Microcomputadores , Natação
8.
Soft Matter ; 16(10): 2448-2459, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31984393

RESUMO

Inertial microfluidics has emerged over the past decade as a powerful tool to accurately control cells and microparticles for diverse biological and medical applications. Many approaches have been proposed to date in order to increase the efficiency and accuracy of inertial microfluidic systems. However, the effects of channel cross-section and solution properties (Newtonian or non-Newtonian) have not been fully explored, primarily due to limitations in current microfabrication methods. In this study, we overcome many of these limitations using wax 3D printing technology and soft lithography through a novel workflow, which eliminates the need for the use of silicon lithography and polydimethylsiloxane (PDMS) bonding. We have shown that by adding dummy structures to reinforce the main channels, optimizing the gap between the dummy and main structures, and dissolving the support wax on a PDMS slab to minimize the additional handling steps, one can make various non-conventional microchannels. These substantially improve upon previous wax printed microfluidic devices where the working area falls into the realm of macrofluidics rather than microfluidics. Results revealed a surface roughness of 1.75 µm for the printed channels, which does not affect the performance of inertial microfluidic devices used in this study. Channels with complex cross-sections were fabricated and then analyzed to investigate the effects of viscoelasticity and superposition on the lateral migration of the particles. Finally, as a proof of concept, microcarriers were separated from human mesenchymal stem cells using an optimized channel with maximum cell-holding capacity, demonstrating the suitability of these microchannels in the bioprocessing industry.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Microtecnologia/instrumentação , Impressão Tridimensional , Ceras/química , Linhagem Celular , Desenho de Equipamento , Humanos , Células-Tronco Mesenquimais/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas
9.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389851

RESUMO

Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Movimento (Física) , Polímeros , Desenho de Equipamento , Dedos , Mãos , Humanos
10.
Langmuir ; 33(22): 5565-5576, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28489410

RESUMO

This study is an attempt to make a step forward to implement the very immature concept of pumpless transportation of liquid into a real miniaturized device or lab-on-chip (LOC) on a plastic substrate. "Inert" plastic materials such as polypropylene (PP) are used in a variety of biomedical applications but their surface engineering is very challenging. Here, it was demonstrated that with a facile innovative wettability patterning route using fluorosilanized UV-independent TiO2 nanoparticle coating it is possible to create wedge-shaped open microfluidic tracks on inert solid surfaces for low-cost biomedical devices (lab-on-plastic). For the future miniaturization and integration of the tracks into a device, a variety of characterization techniques were used to not only systematically study the surface patterning chemistry and topography but also to have a clear knowledge of its biological interactions and performance. The effect of such surface architecture on the biological performance was studied in terms of static/dynamic protein (bovine serum albumin) adsorption, bacterial (Staphylococcus aureus and Staphylococcus epidermidis) adhesion, cell viability (using HeLa and MCF-7 cancer cell lines as well as noncancerous human fibroblast cells), and cell patterning (Murine embryonic fibroblasts). Strategies are discussed for incorporating such a confined track into a diagnostic device in which its sensing portion is based on protein, microorganism, or cells. Finally, for the proof-of-principle of biosensing application, the well-known high-affinity molecular couple of BSA-antiBSA as a biological model was employed.


Assuntos
Microfluídica , Animais , Técnicas Biossensoriais , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Polipropilenos , Staphylococcus epidermidis , Molhabilidade
11.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788059

RESUMO

Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 µm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.


Assuntos
Biomimética , Ácido Hialurônico , Hidrogel de Polietilenoglicol-Dimetacrilato , Mecanorreceptores , Sistemas Microeletromecânicos
12.
Proteomes ; 12(2)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921823

RESUMO

Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.

13.
Biomimetics (Basel) ; 9(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38248592

RESUMO

Engineering artificial mechanosensory hair cells offers a promising avenue for developing diverse biosensors spanning applications from biomedicine to underwater sensing. Unfortunately, current artificial sensory hair cells do not have the ability to simultaneously achieve ultrahigh sensitivity with low-frequency threshold detection (e.g., 0.1 Hz). This work aimed to solve this gap by developing an artificial sensory hair cell inspired by the vestibular sensory apparatus, which has such functional capabilities. For device characterization and response testing, the sensory unit was inserted in a 3D printed lateral semicircular canal (LSCC) mimicking the environment of the labyrinth. The sensor was fabricated based on platinum (Pt) thin film which was reinforced by carbon nanofibers (CNFs). A Pi-shaped hair cell sensor was created as the sensing element which was tested under various conditions of simulated head motion. Results reveal the hair cell sensor displayed markedly higher sensitivity compared to other reported artificial hair cell sensors (e.g., 21.47 mV Hz-1 at 60°) and low frequency detection capability, 0.1 Hz < f < 1.5 Hz. Moreover, like the LSCC hair cells in biology, the fabricated sensor was most sensitive in a given plane of rotational motion, demonstrating features of directional sensitivity.

14.
J Mech Behav Biomed Mater ; 151: 106396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237204

RESUMO

This study investigates the performance of personalised middle ear prostheses under static pressure through a combined approach of numerical analysis and experimental validation. The sound transmission performances of both normal and reconstructed middle ears undergo changes under high positive or negative pressure within the middle ear cavity. This pressure fluctuation has the potential to result in prosthesis displacement/extrusion in patients. To optimise the design of middle ear prostheses, it is crucial to consider various factors, including the condition of the middle ear cavity in which the prosthesis is placed. The integration of computational modelling techniques with non-invasive imaging modalities has demonstrated significant promise and distinct prospects in middle ear surgery. In this study, we assessed the efficacy of Finite Element (FE) analysis in modelling the responses of both normal and reconstructed middle ears to elevated static pressure within the ear canal. The FE model underwent validation using experimental data derived from human cadaveric temporal bones before progressing to subsequent investigations. Afterwards, we assessed stapes and umbo displacements in the reconstructed middle ear under static pressure, with either a columella-type prosthesis or a prosthetic incus, closely resembling a healthy incus. Results indicated the superior performance of the prosthetic incus in terms of both sound transmission to the inner ear and stress distribution patterns on the TM, potentially lowering the risk of prosthesis displacement/extrusion. This study underscores the potential of computational analysis in middle ear surgery, encompassing aspects such as prosthesis design, predicting outcomes in ossicular chain reconstruction (OCR), and mitigating experimental costs.


Assuntos
Orelha Média , Prótese Ossicular , Humanos , Orelha Média/cirurgia , Estribo , Bigorna/cirurgia , Desenho de Prótese
15.
Micromachines (Basel) ; 14(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512743

RESUMO

This article presents an application of a grounded substrate-based metasurface for hosting dielectric resonators (DRs), enabling a wide dual-band circularly polarized (CP) operation. The antenna structure comprises centrally positioned rectangular DRs, one above the other, along with a 7 × 7 square-slotted metasurface. The metasurface and DRs are hosted above a grounded substrate, which is fed through a single coaxial feed placed at a specific angle, employing a modified upper probe of the coaxial feed. The proposed hybrid technique utilizes the combined benefits of the feed angle and a well-matched metasurface, resulting in performance improvement. Notably, a measured impedance bandwidth of 88.1% for |S11| is achieved within the frequency range of 4.0 GHz to 10.3 GHz. Furthermore, the antenna design exhibits two overlapping measured 3-dB axial ratio (AR) bandwidths: 23.62% from 4.25 GHz to 5.4 GHz and 5.12% from 7.6 GHz to 8 GHz. The peak gain of the antenna is measured at 8.4 dBic. Consequently, this innovative single-feed antenna design, characterized by its compact profile, holds significant potential for realizing multi-band operations. Furthermore, the developed antenna is well-suited for deployment in indoor radio links and INSAT applications.

16.
Micromachines (Basel) ; 14(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374829

RESUMO

The three-dimensional printed wideband prototype (WBP) was proposed, which is able to enhance the horn feed source by generating a more uniform phase distribution that is obtained after correcting aperture phase values. The noted phase variation obtained without the WBP was 163.65∘ for the horn source only, which was decreased to 19.68∘, obtained after the placement of the WBP at a λ/2 distance above the feed horn aperture. The corrected phase value was observed at 6.25 mm (0.25λ) above the top face of the WBP. The use of a five-layer cubic structure is able to generate the proposed WBP with dimensions of 105 mm × 105 mm × 37.5 mm (4.2λ× 4.2λ× 1.5λ), which can improve directivity and gain by 2.5 dB throughout the operating frequency range with a lower side lobe level. The overall dimension of the 3D printed horn was 98.5 mm × 75.6 mm × 192.6 mm (3.94λ× 3.02λ× 7.71λ), where the 100 % infill value was maintained. The horn was painted with a double layer of copper throughout its surface. In a design frequency of 12 GHz, the computed directivity, gain, side lobe level in H- and E- planes were 20.5 dB, 20.5 dB, -26.5 dB, and -12.4 dB with only a 3D printed horn case and, with the proposed prototype placed above this feed source, these values improved to 22.1 dB, 21.9 dB, -15.5 dB, and -17.5 dB, respectively. The realized WBP was 294 g and the overall system was 448 g in weight, which signifies a light weight condition. The measured return loss values were less than 2, which supports that the WBP has matching behavior over the operating frequency range.

17.
Biosens Bioelectron ; 226: 115131, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804663

RESUMO

Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in µPADs. Enzymatic µPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic µPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic µPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of µPADs and discuss different fabrication methods as the central parts of the µPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic µPADs for rapid, low-cost, and mass production and improvement have been considered.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , Papel
18.
ACS Appl Mater Interfaces ; 15(35): 41806-41816, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610412

RESUMO

Over the past few decades, flexible piezoelectric devices have gained increasing interest due to their wide applications as wearable sensors and energy harvesters. Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), as one of piezoelectric polymers, has caught considerable attention because of its high flexibility, high thermal stability, and biocompatibility. However, its relatively lower piezoelectricity limits its broader applications. Herein, we present a new approach to improving the piezoelectricity of PVDF-TrFE nanofibers by integrating barium titanate (BTO) nanoparticles. Instead of being directly dispersed into PVDF-TrFE nanofibers, the BTO nanoparticles were electrosprayed between the nanofiber layers to create a sandwich structure. The results showed that the sample with BTO sandwiched between PVDF-TrFE nanofibers showed a much higher piezoelectric output compared to the sample with BTO uniformly dispersed in the nanofibers, with a maximum of ∼ 457% enhancement. Simulation results suggested that the enhanced piezoelectricity is due to the larger strain induced in the BTO nanoparticles in the sandwich structure. Additionally, BTO might be better poled during electrospraying with higher field strength, which is also believed to contribute to enhanced piezoelectricity. The potential of the piezoelectric nanofiber mats as a sensor for measuring biting force and as a sensor array for pressure mapping was demonstrated.

19.
ACS Nano ; 17(13): 12445-12457, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37347939

RESUMO

Membrane-based salinity gradient energy generation from the osmotic potential at the interface of a river and seawater through reverse electrodialysis is a promising route for realizing clean, abundant, and sustainable energy. Membrane permeability and selective ion transport are crucial for efficient osmotic energy harvesting. However, balancing these two parameters in the membrane design and synthesis remains challenging. Herein, a hybridized bilayer metal-organic frameworks (MOF-on-MOF) membrane is fabricated for efficient transmembrane conductance for enhanced osmotic power generation. The heterogeneous membrane is constructed from imidazolate framework-8 (ZIF-8) deposited on a UiO-66-NH2 membrane intercalated with poly(sodium-4-styrenesulfonate) (PSS). The angstrom-scale cavities in the ZIF-8 layer promote ion selectivity by size exclusion, and the PSS-intercalated UiO-66-NH2 film ensures cation permeability. The synergistic effect is a simultaneous improvement in ion transport and selectivity from an overlapped electric double layer generating 40.01 W/m2 and 665 A/m2 permeability from a 500-fold concentration gradient interface at 3 KΩ and 9.20 W/m2 from mixing of real sea-river water. This work demonstrates a rational design strategy for hybrid membranes with improved ion selectivity and permeability for the water-energy nexus.

20.
Environ Sci Pollut Res Int ; 30(14): 40327-40339, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609970

RESUMO

A precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine-formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV-vis spectra, and N2 adsorption-desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence intensity fluctuations under fluorescence emission in the vicinity of 390 nm with a λexc of 350 nm. The fluorescence intensity of the NCS probe weakened in the presence of Hg2+ owing to the effective fluorescence quenching by that, which is not corresponding to the special covalent liking between the ligand and the metal. The effects of the fluorescence nanoprobe concentration, pH, and sensing time were monitored to acquire the best conditions for determining Hg2+. Surprisingly, NCS revealed excellent selectivity and sensitivity towards Hg2+ in the samples containing Co2+, Na+, K+, Fe2+, Mn2+, Al3+, Pb2+, Ni2+, Ca2+, Cu2+, Mg2+, Cd2+, Cr3+, Li+, Cs+, and Ba2+. The fluorescence response was linearly proportional to Hg2+ concentration in 0.013-0.046 µM with a limit of detection of 9.58 nM. The in vitro and in vivo toxicological analyses confirmed the completely safe and biocompatible features of NCS, which provides promise for use for water, fruit, vegetable, and/or other forms of natural-connected materials exposed to Hg2+, with no significant toxicity noticed toward different cells/organs/tissues.


Assuntos
Mercúrio , Nanosferas , Corantes Fluorescentes/química , Mercúrio/análise , Carbono/química , Linhagem Celular , Água , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA